scholarly journals Anterior cingulate cortex differently modulates fronto-parietal functional connectivity between resting-state and working memory tasks

2019 ◽  
Author(s):  
Xin Di ◽  
Heming Zhang ◽  
Bharat B Biswal

AbstractThe brain fronto-parietal regions and the functional communications between them are critical in supporting working memory and other executive functions. The functional connectivity between fronto-parietal regions are modulated by working memory loads, and are shown to be modulated by a third brain region in resting-state. However, it is largely unknown that whether the third-region modulations remain the same during working memory tasks or were largely modulated by task demands. In the current study, we collected functional MRI (fMRI) data when the subjects were performing n-back tasks and in resting-state. We first used a block-designed localizer to define the fronto-parietal regions that showed higher activations in the 2-back than the 1-back condition. Next, we performed physiophysiological interaction (PPI) analysis using left and right middle frontal gyrus (MFG) and superior parietal lobule (SPL) regions, respectively, in three continuous-designed runs of resting-state, 1-back, and 2-back conditions. No regions showed consistent modulatory interactions with the seed pairs in the three conditions. Instead, the anterior cingulate cortex (ACC) showed different modulatory interactions with the right MFG and SPL among the three conditions. While increased activity of the ACC was associated with decreased functional coupling between the right MFG and SPL in resting-state, it was associated with increased functional coupling in the 2-back condition. The observed task modulations support the functional significance of the modulations of the ACC on fronto-parietal connectivity.

2021 ◽  
Vol 11 (11) ◽  
pp. 1539
Author(s):  
Gianluca Cruciani ◽  
Maddalena Boccia ◽  
Vittorio Lingiardi ◽  
Guido Giovanardi ◽  
Pietro Zingaretti ◽  
...  

Studies comparing organized (O) and unresolved/disorganized (UD) attachment have consistently shown structural and functional brain abnormalities, although whether and how attachment patterns may affect resting state functional connectivity (RSFC) is still little characterized. Here, we investigated RSFC of temporal and limbic regions of interest for UD attachment. Participants’ attachment was classified via the Adult Attachment Interview, and all participants underwent clinical assessment. Functional magnetic resonance imaging data were collected from 11 UD individuals and seven matched O participants during rest. A seed-to-voxel analysis was performed, including the anterior and the posterior cingulate cortex, the bilateral insula, amygdala and hippocampus as seed regions. No group differences in the clinical scales emerged. Compared to O, the UD group showed lower RSFC between the left amygdala and the left cerebellum (lobules VIII), and lower functional coupling between the right hippocampus and the posterior portion of the right middle temporal gyrus. Moreover, UD participants showed higher RSFC between the right amygdala and the anterior cingulate cortex. Our findings suggest RSFC alterations in regions associated with encoding of salient events, emotion processing, memories retrieval and self-referential processing in UD participants, highlighting the potential role of attachment experiences in shaping brain abnormalities also in non-clinical UD individuals.


2020 ◽  
Author(s):  
Hayley Gilbertson ◽  
Lin Fang ◽  
Jeremy A. Andrzejewski ◽  
Joshua M. Carlson

AbstractThe error-related negativity (ERN) is a response-locked event-related potential, occurring approximately 50 ms following an erroneous response at frontocentral electrode sites. Source localization and functional magnetic resonance imaging (fMRI) research indicate that the ERN is likely generated by activity in the dorsal anterior cingulate cortex (dACC). The dACC is thought to be a part of a broader network of brain regions that collectively comprise an error-monitoring network. However, little is known about how intrinsic connectivity within the dACC-based error-monitoring network contributes to variability in ERN amplitude. The purpose of this study was to assess the relationship between dACC functional connectivity and ERN amplitude. In a sample of 53 highly trait-anxious individuals, the ERN was elicited in a flanker task and functional connectivity was assessed in a 10-minute resting-state fMRI scan. Results suggest that the strength of dACC seeded functional connectivity with the supplementary motor area is correlated with the ΔERN (i.e., incorrect – correct responses) amplitude such that greater ΔERN amplitude was accompanied by greater functional coupling between these regions. In addition to the dACC, exploratory analyses found that functional connectivity in the caudate, cerebellum, and a number of regions in the error-monitoring network were linked to variability in ΔERN amplitude. In sum, ERN amplitude appears to be related to the strength of functional connectivity between error-monitoring and motor control regions of the brain.


2014 ◽  
Vol 28 (12) ◽  
pp. 1115-1124 ◽  
Author(s):  
Stephanie M Gorka ◽  
Daniel A Fitzgerald ◽  
Harriet de Wit ◽  
Mike Angstadt ◽  
K Luan Phan

2018 ◽  
Vol 53 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Yongjun Chen ◽  
Ziyu Meng ◽  
Zongfeng Zhang ◽  
Yajing Zhu ◽  
Rui Gao ◽  
...  

Objective: The imbalance in neurotransmitter and neuronal metabolite concentration within cortico-striato-thalamo-cortical (CSTC) circuit contributes to obsessive–compulsive disorder’s (OCD) onset. Previous studies showed that glutamate mediated upregulation of resting-state activity in healthy people. However, there have been few studies investigating the correlational features between functional and neurochemical alterations in OCD. Methods: We utilize a combined resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) approach to investigate the altered functional connectivity (FC) in association with glutamatergic dysfunction in OCD pathophysiology. Three regions of interest are investigated, i.e., medial prefrontal cortex and bilateral thalamus, for seed-based whole-brain FC analysis as well as MRS data acquisition. There are 23 unmedicated adult OCD patients and 23 healthy controls recruited for brain FC analysis. Among them, 12 OCD and 8 controls are performed MRS data acquisition. Results: Besides abnormal FC within CSTC circuit, we also find altered FCs in large-scale networks outside CSTC circuit, including occipital area and limbic and motor systems. The decreased FC between right thalamus and right middle occipital gyrus (MOG) is correlated with glutamatergic signal within right thalamus in OCD patients. Moreover, the FC between right thalamus and right dorsal anterior cingulate cortex (dACC) is associated with glutamate level in right thalamus, specifically in patient’s group. Finally, the FC between right thalamus and right MOG is correlated with patient’s Yale–Brown Obsessive Compulsive Scale (YBOCS) compulsion and total scores, while the right thalamic glutamatergic signal is associated with YBOCS-compulsion score. Conclusion: Our findings showed that the coupled intrinsic functional–biochemical alterations existed both within CSTC circuit and from CSTC to occipital lobe in OCD pathophysiology.


2019 ◽  
Vol 33 (12) ◽  
pp. 1600-1609 ◽  
Author(s):  
Robin N Perry ◽  
Hera E Schlagintweit ◽  
Christine Darredeau ◽  
Carl Helmick ◽  
Aaron J Newman ◽  
...  

Background: Changes in resting state functional connectivity between the insula and dorsal anterior cingulate cortex as well as between the insula and nucleus accumbens have been linked to nicotine withdrawal and/or administration. However, because many of nicotine’s effects in humans appear to depend, at least in part, on the belief that nicotine has been administered, the relative contribution of nicotine’s pharmacological actions to such effects requires clarification. Aims: The purpose of this study was to examine the impacts of perceived and actual nicotine administration on neural responses. Methods: Twenty-six smokers were randomly assigned to receive either a nicotine inhaler (4 mg deliverable) or a nicotine-free inhaler across two sessions. Inhaler content instructions (told nicotine vs told nicotine-free) differed across sessions. Resting state functional connectivity between sub-regions of the insula and the dorsal anterior cingulate cortex and nucleus accumbens was measured using magnetic resonance imaging before and after inhaler administration. Results: Both actual and perceived nicotine administration independently altered resting state functional connectivity between the anterior insula and the dorsal anterior cingulate cortex, with actual administration being associated with decreased resting state functional connectivity, and perceived administration with increased resting state functional connectivity. Actual nicotine administration also contralaterally reduced resting state functional connectivity between the anterior insula and nucleus accumbens, while reductions in resting state functional connectivity between the mid-insula and right nucleus accumbens were observed when nicotine was administered unexpectedly. Changes in resting state functional connectivity associated with actual or perceived nicotine administration were unrelated to changes in subjective withdrawal and craving. Changes in withdrawal and craving were however independently associated with resting state functional connectivity between the nucleus accumbens and insula. Conclusions: Our findings highlight the importance of considering non-pharmacological factors when examining drug mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document