scholarly journals Urban birdsongs: higher minimum song frequency of an urban colonist persists in a common garden experiment

2019 ◽  
Author(s):  
Dustin G. Reichard ◽  
Jonathan W. Atwell ◽  
Meelyn M. Pandit ◽  
Gonçalo C. Cardoso ◽  
Trevor D. Price ◽  
...  

AbstractEnvironmental changes caused by urbanization and noise pollution can have profound effects on acoustic communication. Many organisms use higher sound frequencies in urban environments with low-frequency noise, but the developmental and evolutionary mechanisms underlying these shifts are less clear. We used a common garden experiment to ask whether changes in minimum song frequency observed 30 years after a songbird colonized an urban environment are a consequence of behavioral flexibility or canalized changes that occur early in development. We captured male juvenile dark-eyed juncos (Junco hyemalis thurberi) from two recently diverged populations (urban and mountain) soon after they reached independence (aged 25-40 days), raised them in identical indoor aviaries, and studied their songs at an age of three years. We found that the large population difference in minimum frequency observed in the field persisted undiminished in the common garden despite the absence of noise. We also found some song sharing between the common garden and natal field populations, indicating that early song memorization before capture could contribute to the persistent song differences in adulthood. These results are the first to show that frequency shifts in urban birdsong are maintained in the absence of noise by genetic evolution and/or early life experiences.

2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100
Author(s):  
Jonathan D. Craft ◽  
Daniel Harrelson ◽  
William N. Setzer

The chemotaxonomy of the Conocephalum spp. complex, based on GC-MS analysis of the volatile compositions, has helped to reveal cryptic biodiversity and delineate actual distribution patterns of chemotypes. In the Appalachian Mountains, two samples from eastern central part of the range were previously shown to be C. salebrosum. Additionally, it has recently come to light that stress can alter the volatile composition of C. conicum. This study address a previously unsampled region of the southeastern Appalachians, a region that is a biodiversity epicenter, to determine if more chemotypic diversity remains to be seen for the Conocephalum spp. complex. A common garden experiment was performed, but yielded more of a common stress experiment, and significantly altered the volatile compositions. Wild-collected controls and a meta-analysis of these data and those from previous works suggest that the common garden experiment caused stress and that the liverworts sampled belong to the C. salebrosum clade of of the Conocephalum spp. complex.


2020 ◽  
Vol 170 ◽  
pp. 33-41
Author(s):  
Dustin G. Reichard ◽  
Jonathan W. Atwell ◽  
Meelyn M. Pandit ◽  
Gonçalo C. Cardoso ◽  
Trevor D. Price ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.


Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillaume Wos ◽  
Rimjhim Roy Choudhury ◽  
Filip Kolář ◽  
Christian Parisod

Abstract Background Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. Results Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). Conclusions Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.


2018 ◽  
Vol 425 ◽  
pp. 35-44 ◽  
Author(s):  
Timothy J. Albaugh ◽  
Thomas R. Fox ◽  
Chris A. Maier ◽  
Otávio C. Campoe ◽  
Rafael A. Rubilar ◽  
...  

NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


2018 ◽  
Vol 43 (1) ◽  
pp. 153-161
Author(s):  
Scott Zona ◽  
Michael Hass ◽  
Michaela Fickerová ◽  
Sandra Mardonovich ◽  
Kim Sanderford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document