scholarly journals Identification and characterization of zebrafish Tlr4 co-receptor Md-2

2019 ◽  
Author(s):  
Andrea N. Loes ◽  
Melissa N. Hinman ◽  
Dylan R. Farnsworth ◽  
Adam C. Miller ◽  
Karen Guillemin ◽  
...  

ABSTRACTThe zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS-sensing. In amniotes, the protein complex formed by Toll-like receptor 4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule lipopolysaccharide (LPS) and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4: Md-2 has not been identified outside of amniotes, while the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s. We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96. Using single-cell RNA-Seq, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. Unlike amniote LY96, zebrafish ly96 expression is restricted to a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4a form a complex that activates NF-κB signaling in response to LPS, but ly96 loss-of-function mutations gave little protection against LPS-toxicity in larval zebrafish. Finally, by analyzing the genomic context of tlr4 genes in eleven jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS-responsiveness to a specific subset of innate immune cells.

2016 ◽  
Vol 196 (11) ◽  
pp. 4510-4521 ◽  
Author(s):  
Julia Svedova ◽  
Naomi Tsurutani ◽  
Wenhai Liu ◽  
Kamal M. Khanna ◽  
Anthony T. Vella

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 414.2-415
Author(s):  
X. Huang ◽  
T. W. Li ◽  
J. Chen ◽  
Z. Huang ◽  
S. Chen ◽  
...  

Background:Ankylosing spondylitis (AS) is a type of common, chronic inflammatory disease that compromises the axial skeleton and sacroiliac joints, causing inflammatory low back pain and progressive spinal stiffness, over time some patients develop spinal immobility and ankylosis which can lead to a decrease in quality of life. The last few decades, evidence has clearly indicated that neutrophil also plays key roles in the progression of AS. However, the immunomodulatory roles and mechanisms of neutrophils in AS are poorly understood. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) has been reported as an important regulatory molecule, expressed and regulated on different innate immune cells, plays a pivotal role in several autoimmunity diseases. Recent study indicates that Tim3 is also expressed on neutrophils. However, the frequency and roles of Tim3-expressing neutrophils in AS was not clear.Objectives:In this study, we investigated the expression of Tim3 on neutrophils in AS patients and explored the correlation between the level of Tim3-expressing neutrophils and the disease activity and severity of AS.Methods:Patients with AS were recruited from Guangdong Second Provincial General Hospital (n=62). Age/sex-matched volunteers as Healthy controls (HC) (n=39). The medical history, clinical manifestations, physical examination, laboratory measurements were recorded. The expression of costimulatory molecules including programmed death 1 (PD-1), Tim-3 on neutrophils were determined by flow cytometry. The mRNA expression of PD-1 and Tim-3 was determined by real-time PCR. The levels of Tim3-expressing neutrophils in AS patients were further analyzed for their correlation with the markers of inflammation such as ESR,CRP,WBC and neutrophil count(NE), as well as disease activity and severity of AS. The expression of Tim3 on neutrophils was monitored during the course of treatment (4 weeks).Results:The expression of Tim3 on neutrophils in patients with AS was increased compared to the HC (Figure 1A). However, significant difference was observed in the frequency of PD-1-expressing neutrophils between AS patients and HC (Figure 1B). The expression analysis of Tim-3 mRNA, but not PD-1, confirmed the results obtained from flow cytometry (Figure 1C). The level of Tim3-expressing neutrophils in patients with AS showed an positive correlation with ESR, CRP and ASAS-endorsed disease activity score (ASDAS) (Figure 1D). Moreover, the frequency of Tim3-expressing neutrophils in active patients(ASDAS≥1.3) was increased as compare with the inactive patients (ASDAS<1.3) (Figure 1E). As shown in Figure 1F, the frequency of Tim3-expressing neutrophils decreased after the treatment.Conclusion:Increased Tim-3 expression on neutrophils may be a novel indicator to assess disease activity and severity in AS, which may serves as a negative feedback mechanism preventing potential tissue damage caused by excessive inflammatory responses in AS patients.References:[1]Han, G., Chen, G., Shen, B. & Li, Y., Tim-3: an activation marker and activation limiter of innate immune cells. FRONT IMMUNOL 4 449 (2013).[2]Vega-Carrascal, I. et al., Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. J IMMUNOL 192 2418 (2014).Figure 1.(A,B)The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by flow cytometry.(C) The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by RT-PCR.(D)The correction between Tim3-expressing neutrophils and ESR,CRP,ASDAS.(E) The expression of Tim3 on neutrophils in active and inactive patients.(F) Influence of treatment on the frequency of Tim3-expressing neutrophils.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document