scholarly journals Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience

2019 ◽  
Author(s):  
Timothy W. Dunn ◽  
James E. Fitzgerald

Breakthrough technologies for monitoring and manipulating single-neuron activity provide unprecedented opportunities for whole-brain neuroscience in larval zebrafish1–9. Understanding the neural mechanisms of visually guided behavior also requires precise stimulus control, but little prior research has accounted for physical distortions that result from refraction and reflection at an air-water interface that usually separates the projected stimulus from the fish10–12. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior13,14, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.

1997 ◽  
Vol 272 (2) ◽  
pp. R532-R540 ◽  
Author(s):  
K. Ota ◽  
T. Katafuchi ◽  
A. Takaki ◽  
T. Hori

The single neuron activity in the anteroventral region of the third ventricle (AV3V) was extracellularly recorded in urethan and alpha-chloralose anesthetized rats. Electrical stimulation of the medial preoptic area (mPOA) and the paraventricular nucleus (PVN) revealed a reciprocal neural connection between the AV3V and these hypothalamic nuclei with an ipsilateral preponderance. All the AV3V neurons, which were antidromically activated by the stimulation of the mPOA or the PVN, altered their activity after the systemic injection of interleukin (IL)-1beta. On the other hand, only about 60% of the AV3V neurons that showed orthodromic responses were affected by IL-1beta. In seven of nine AV3V neurons that were electrophysiologically identified to send their axons to the mPOA or the PVN, the recombinant human IL-1beta-induced excitation and inhibition were attenuated by a local application of sodium salicylate through multibarreled micropipettes. These results suggest that the AV3V neurons alter their activity in response to the blood-borne IL-1beta, at least in part, through a local synthesis of prostanoids and then send the information to the mPOA and PVN.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
N. Chandravadia ◽  
D. Liang ◽  
A. G. P. Schjetnan ◽  
A. Carlson ◽  
M. Faraut ◽  
...  

1984 ◽  
Vol 246 (4) ◽  
pp. R542-R550 ◽  
Author(s):  
N. Shimizu ◽  
Y. Oomura ◽  
T. Sakata

Endogenous sugar acids, 3,4-dihydroxybutanoic acid (2-deoxytetronic acid, 2-DTA) and 2,4,5-trihydroxypentanoic acid (3-deoxypentonic acid, 3-DPA), have been identified in the serum of fasted rats. Effects of these sugar acids on rat feeding behavior and neuron activity were investigated. Injections of 2-DTA (2.5 mumol) into the third cerebral ventricle of chronic rats suppressed food intake and single-neuron activity in the lateral hypothalamic area (LHA). Food consumption was reduced for 24 h, even in 72-h food-deprived rats. The same amounts of 3-DPA elicited feeding and increased LHA single-neuron activity with latencies of 6-8 min. Electrophoretically applied 2-DTA significantly and specifically suppressed activity of glucose-sensitive neurons in the LHA, whereas 3-DPA facilitated the activity. Nonglucose-sensitive LHA neurons were not affected by these sugar acids. The high correlation between modulation of feeding behavior and changes in LHA neuron activity after injection of these sugar acids suggested that 2-DTA may act as an endogenous satiety substance and 3-DPA as a hunger substance. The effects may be mediated through glucose-sensitive neurons in the LHA.


Sign in / Sign up

Export Citation Format

Share Document