scholarly journals Coding of odour and space in the hemimetabolous insect Periplaneta americana

2019 ◽  
Author(s):  
Marco Paoli ◽  
Hiroshi Nishino ◽  
Einat Couzin-Fuchs ◽  
C. Giovanni Galizia

AbstractThe general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae’s exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selective labelling antennal lobe projection neurons with a calcium sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus-specific and concentration-dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone-B activate sub-region of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.Summary statementBy selective labelling the cockroach’s antennal lobe output neurons, we investigated the logic of olfactory coding in a hemimetabolous insect, showing that odour responses are stimulus-specific, concentration-dependent, and preserve information on the spatial structure of the stimulus.


2021 ◽  
Vol 383 (1) ◽  
pp. 59-73
Author(s):  
Debora Fuscà ◽  
Peter Kloppenburg

AbstractHighly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.



Author(s):  
Hong Lei ◽  
Lynne A. Oland ◽  
Jeffery A. Riffell ◽  
Aaron Beyerlein ◽  
John G. Hildebrand

Olfactory circuits of all animals face a common challenge of extracting meaningful odor cues from background odors. This chapter summarizes what the authors have learned from their ongoing work toward the goal of understanding how the neural circuits in a moth’s antennal lobe (AL) determine diverse physiological responses that ultimately mediate the animal’s natural behavior. The text describes the different types of cellular elements that participate in the glomerular circuitry, focuses on the functional organization of these elements, and attempts to explain observed physiological responses in the context of behavior using the understood operating principles of the AL circuits. For convenience, the connections from the perspective of the main output neurons of the circuitry, uniglomerular projection neurons (uPNs), are described.



2019 ◽  
Vol 132 (4) ◽  
pp. 319-329 ◽  
Author(s):  
John Klymko ◽  
Paul Catling ◽  
Jeffrey B. Ogden ◽  
Robert W. Harding ◽  
Donald F. McAlpine ◽  
...  

We provide an updated checklist of Orthoptera and their allies for each Maritime province of Canada with details for 21 new species records. Drumming Katydid (Meconema thalassinum), recorded from Nova Scotia (NS) and Prince Edward Island (PEI), and Sprinkled Grasshopper (Chloealtis conspersa), recorded from New Brunswick (NB) are reported for the first time from the Maritimes as a whole. We report range extensions in the Maritime region for Australian Cockroach (Periplaneta australasiae; NB), Treetop Bush Katydid (Scudderia fasciata; NS), Short-legged Camel Cricket (Ceuthophilus brevipes; PEI), Spotted Camel Cricket (Ceuthophilus maculatus; PEI), Roesel’s Shield-backed Katydid (Roeseliana roesellii; NS), and Black-horned Tree Cricket (Oecanthus nigricornis; PEI). Short-winged Mole Cricket (Neoscapteriscus abbreviatus; NB) and European Mole Cricket (Gryllotalpa gryllotalpa; NS) are reported as adventives (non-native species that are believed to be not yet established), new to Canada from the Maritimes. Other new records for species not known to be established are Lined Earwig (Doru taeniatum; NS), Australian Cockroach (Periplaneta australasiae; PEI), American Cockroach (Periplaneta americana; NB), Brown Cockroach (Periplaneta brunnea; PEI), Smooth Cockroach (Nyctibora laevigata; NB), West Indian Leaf Cockroach (Blaberus discoidalis; NB), an unidentified Parcoblatta species (NB), Brown-banded Cockroach (Supella longipalpa; PEI), Praying Mantis (Mantis religiosa; NB), and American Bird Grasshopper (Schistocerca americana; NS).



1964 ◽  
Vol 5 (3) ◽  
pp. 418-421
Author(s):  
Hugh E. Vroman ◽  
J.N. Kaplanis ◽  
W.E. Robbins


Sign in / Sign up

Export Citation Format

Share Document