scholarly journals On deleterious mutations in perennials: inbreeding depression, mutation load and life-history evolution

2019 ◽  
Author(s):  
Thomas Lesaffre ◽  
Sylvain Billiard

ABSTRACTIn Angiosperms, perennials typically present much higher levels of inbreeding depression than annuals. One hypothesis to explain this pattern stems from the observation that inbreeding depression is expressed across multiple life stages in Angiosperms. It posits that increased inbreeding depression in more long-lived species could be explained by differences in the way mutations affect fitness in these species, through the life stages at which they are expressed. In this study, we investigate this hypothesis. We combine a physiological growth model and multilocus population genetics approaches to describe a full genotype-to-phenotype-to-fitness map. We study the behaviour of mutations affecting growth or survival, and explore their consequences in terms of inbreeding depression and mutation load. Although our results only agree with empirical data within a narrow range of conditions, we argue that they may point us towards the type of traits susceptible to underlie inbreeding depression in long-lived species, that is traits under sufficiently strong selection, on which selection decreases sharply as life expectancy increases. Then, we study the role deleterious mutations maintained at mutation-selection balance may play in the coevolution between growth and survival strategies.Description of the manuscriptThe main text of the manuscript, excluding captions and headers, is 5712 words long. There are 4 figures in the main text, numbered from 1 to 4. In the present file, pages 1 to 33 correspond to the main text (including title page, abstract and litterature cited), while the remaining pages (33 to 72) correspond to appendices. There are 5 sections in Appendices, which are all available at the end of the manuscript file. There are 12 figures in Appendices, numbered from S1 to S12.

1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


2005 ◽  
Vol 86 (1) ◽  
pp. 41-51 ◽  
Author(s):  
SYLVAIN GLÉMIN

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for several reasons. For instance, lethals may contribute substantially to inbreeding depression. The frequency of lethal alleles depends on population size, but it is not clear how it is affected by population structure. By analysing the case of the infinite island model by numerical approaches and analytical approximations it is shown that, like population size, population structure affects the fate of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also affected by the population structure, whereas the mutation load is only weakly affected. Heterosis also depends on population structure, but it always remains low, of the order of the mutation rate or less. These patterns are compared with those caused by mildly deleterious mutations to give a general picture of the effect of population structure on inbreeding depression, heterosis, and the mutation load.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1191-1202 ◽  
Author(s):  
Michael C Whitlock

Abstract The subdivision of a species into local populations causes its response to selection to change, even if selection is uniform across space. Population structure increases the frequency of homozygotes and therefore makes selection on homozygous effects more effective. However, population subdivision can increase the probability of competition among relatives, which may reduce the efficacy of selection. As a result, the response to selection can be either increased or decreased in a subdivided population relative to an undivided one, depending on the dominance coefficient FST and whether selection is hard or soft. Realistic levels of population structure tend to reduce the mean frequency of deleterious alleles. The mutation load tends to be decreased in a subdivided population for recessive alleles, as does the expected inbreeding depression. The magnitude of the effects of population subdivision tends to be greatest in species with hard selection rather than soft selection. Population structure can play an important role in determining the mean fitness of populations at equilibrium between mutation and selection.


Botany ◽  
2019 ◽  
Vol 97 (7) ◽  
pp. 405-415 ◽  
Author(s):  
Beth H. Ansaldi ◽  
Jennifer J. Weber ◽  
Carol Goodwillie ◽  
Steven J. Franks

The maintenance of outcrossing in cleistogamous plants that produce both open, facultatively outcrossing chasmogamous (CH), and closed, obligate selfing cleistogamous (CL) flowers is puzzling because CL reproduction is thought to be more reliable and less costly. A possible explanation for the maintenance of CH flowers is the avoidance of inbreeding depression. However, inbreeding depression for cleistogamous species has rarely been quantified. In this study, we estimate levels of inbreeding depression in plants from three populations of Triodanis perfoliata (L.) Nieuwl., a dimorphic cleistogamous annual, under greenhouse conditions. Estimates of inbreeding depression at multiple life stages in all three populations were low and often not different from zero. Inbreeding depression at specific life stages varied, with two populations showing later-acting inbreeding depression, which is also found in other selfing species. In two of the study populations, selfed CL progeny outperformed selfed CH progeny, indicating a flower-type effect. The low levels of inbreeding depression and the superior fitness of CL compared with selfed CH flowers that we observed make the maintenance of CH flowers in this system surprising, and suggest that other advantages of outcrossing CH flowers are likely responsible for maintaining mixed mating in this species.


Aquaculture ◽  
2004 ◽  
Vol 241 (1-4) ◽  
pp. 151-168 ◽  
Author(s):  
Sandra J. Keys ◽  
Peter J. Crocos ◽  
Charis Y. Burridge ◽  
Greg J. Coman ◽  
Gerard P. Davis ◽  
...  

2000 ◽  
Vol 75 (1) ◽  
pp. 75-81 ◽  
Author(s):  
THOMAS BATAILLON ◽  
MARK KIRKPATRICK

We studied the effects of population size on the inbreeding depression and genetic load caused by deleterious mutations at a single locus. Analysis shows how the inbreeding depression decreases as population size becomes smaller and/or the rate of inbreeding increases. This pattern contrasts with that for the load, which increases as population size becomes smaller but decreases as inbreeding rate goes up. The depression and load both approach asymptotic limits when the population size becomes very large or very small. Numerical results show that the transition between the small and the large population regimes is quite rapid, and occurs largely over a range of population sizes that vary by a factor of 10. The effects of drift on inbreeding depression may bias some estimates of the genomic rate of deleterious mutation. These effects could also be important in the evolution of breeding systems in hermaphroditic organisms and in the conservation of endangered populations.


1971 ◽  
Vol 18 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Tomoko Ohta

SUMMARYAssociative overdominance due to linked detrimental mutations was investigated using the method of moment equations based on diffusion models. The expectation of the apparent selective value at the marker (neutral) locus has been evaluated. Assume two linked loci, at one of which the steady flux equilibrium is reached under constant mutational input of deleterious mutations (with rate v) having disadvantages hs in heterozygote and s in homozygotes. At another locus, the neutral alleles are segregating with frequencies near 0·5. Let Ne be the effective size of the population and c be the recombination fraction between the two loci. Then the coefficient of associative overdominance at the neutral locus can be obtained by taking the expectation with respect to chromosome frequencies at steady flux equilibrium. It becomes approximatelywhere (LI−L0) is the inbreeding depression caused by deleterious mutations under complete inbreeding, and Nehs ≫ l and hs ≫ v are assumed. More generally, if the inbreeding depression of a chromosome segment with a length of recombination fraction C is (LI−L0) then s′ at the neutral marker at the edge of the segment iswhere hs is the average heterozygote disadvantage of detrimentals.The significance of the associative overdominance is discussed in relation to actual observations. It is proposed that the most of the observed heterozygote superiority including inversion chromosomes of Drosophila, isozyme alleles in Avena and ABO blood group genes in man could be explained by the associated detrimentals.


Sign in / Sign up

Export Citation Format

Share Document