scholarly journals Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein

1998 ◽  
Vol 12 (22) ◽  
pp. 3551-3563 ◽  
Author(s):  
J. M. Bailis ◽  
G. S. Roeder
2018 ◽  
Author(s):  
Tisha Bohr ◽  
Christian R. Nelson ◽  
Stefani Giacopazzi ◽  
Piero Lamelza ◽  
Needhi Bhalla

AbstractThe conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of the meiotic chromosomal protein, HTP-3. Null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss of function allele of HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei, when HTP-3 is present but not yet loaded onto chromosome axes, suggesting an early role in regulating meiotic chromosome metabolism. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has been focused on its regulation of sister chromatid cohesion in meiosis, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin’s functions beyond coordinating regulatory activities at the centromere.


2000 ◽  
Vol 151 (3) ◽  
pp. 613-626 ◽  
Author(s):  
Theresa Hartman ◽  
Kristen Stead ◽  
Douglas Koshland ◽  
Vincent Guacci

The PDS5 gene (precocious dissociation of sisters) was identified in a genetic screen designed to identify genes important for chromosome structure. PDS5 is an essential gene and homologues are found from yeast to humans. Pds5p function is important for viability from S phase through mitosis and localizes to chromosomes during this cell cycle window, which encompasses the times when sister chromatid cohesion exists. Pds5p is required to maintain cohesion at centromere proximal and distal sequences. These properties are identical to those of the four cohesion complex members Mcd1p/Scc1p, Smc1p, Smc3p, and Scc3p/Irr1p (Guacci, V., D. Koshland, and A. Strunnikov. 1997. Cell. 91:47–57; Michaelis, C., R. Ciosk, and K. Nasmyth. 1997. Cell. 91:35–45; Toth, A., R. Ciosk, F. Uhlmann, M. Galova, A. Schleiffer, and K. Nasmyth. 1999. Genes Dev. 13:307–319). Pds5p binds to centromeric and arm sequences bound by Mcd1p. Furthermore, Pds5p localization to chromosomes is dependent on Mcd1p. Thus, Pds5p, like the cohesin complex members, is a component of the molecular glue that mediates sister chromatid cohesion. However, Mcd1p localization to chromosomes is independent of Pds5p, which may reflect differences in their roles in cohesion. Finally, Pds5p is required for condensation as well as cohesion, which confirms the link between these processes revealed through analysis of Mcd1p (Guacci, V., D. Koshland, and A. Strunnikov. 1997. Cell. 91:47–57). Therefore, the link between cohesion and condensation is a general property of yeast chromosomes.


2007 ◽  
Vol 17 (17) ◽  
pp. 1489-1497 ◽  
Author(s):  
Nicolas Malmanche ◽  
Stephanie Owen ◽  
Stephen Gegick ◽  
Soren Steffensen ◽  
John E. Tomkiel ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Sign in / Sign up

Export Citation Format

Share Document