scholarly journals Direct PCR amplification of HCV RNA from human serum.

1992 ◽  
Vol 1 (4) ◽  
pp. 291-292 ◽  
Author(s):  
A Ravaggi ◽  
D Primi ◽  
E Cariani
2021 ◽  
Vol 11 (4) ◽  
pp. 1943
Author(s):  
Joo-Young Kim ◽  
Ju Yeon Jung ◽  
Da-Hye Kim ◽  
Seohyun Moon ◽  
Won-Hae Lee ◽  
...  

Analytical techniques such as DNA profiling are widely used in various fields, including forensic science, and novel technologies such as direct polymerase chain reaction (PCR) amplification are continuously being developed in order to acquire DNA profiles efficiently. However, non-specific amplification may occur depending on the quality of the crime scene evidence and amplification methods employed. In particular, the ski-slope effect observed in direct PCR amplification has led to inaccurate interpretations of the DNA profile results. In this study, we aimed to reduce the ski-slope effect by using dimethyl sulfoxide (DMSO) in direct PCR. We confirmed that DMSO (3.75%, v/v) increased the amplification yield of large-sized DNA sequences more than that of small-sized ones. Using 50 Korean buccal samples, we further demonstrated that DMSO reduced the ski-slope effect in direct PCR. These results suggest that the experimental method developed in this study is suitable for direct PCR and may help to successfully obtain DNA profiles from various types of evidence at crime scenes.


2018 ◽  
Vol 32 ◽  
pp. 80-87 ◽  
Author(s):  
Angie Ambers ◽  
Rachel Wiley ◽  
Nicole Novroski ◽  
Bruce Budowle
Keyword(s):  

Author(s):  
Yongxun Wong ◽  
Boon Kiat Ng ◽  
Kevin Wai Yin Chong ◽  
Wei Siong Holden Lim ◽  
Afiqah Razanah Rosli ◽  
...  

2017 ◽  
Vol 114 (36) ◽  
pp. 9623-9628 ◽  
Author(s):  
Mark Kowarsky ◽  
Joan Camunas-Soler ◽  
Michael Kertesz ◽  
Iwijn De Vlaminck ◽  
Winston Koh ◽  
...  

Blood circulates throughout the human body and contains molecules drawn from virtually every tissue, including the microbes and viruses which colonize the body. Through massive shotgun sequencing of circulating cell-free DNA from the blood, we identified hundreds of new bacteria and viruses which represent previously unidentified members of the human microbiome. Analyzing cumulative sequence data from 1,351 blood samples collected from 188 patients enabled us to assemble 7,190 contiguous regions (contigs) larger than 1 kbp, of which 3,761 are novel with little or no sequence homology in any existing databases. The vast majority of these novel contigs possess coding sequences, and we have validated their existence both by finding their presence in independent experiments and by performing direct PCR amplification. When their nearest neighbors are located in the tree of life, many of the organisms represent entirely novel taxa, showing that microbial diversity within the human body is substantially broader than previously appreciated.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1042-1048 ◽  
Author(s):  
C. L. Trout ◽  
J. B. Ristaino ◽  
M. Madritch ◽  
T. Wangsomboondee

Late blight caused by the oomycete pathogen Phytophthora infestans is a devastating disease of potato and tomato worldwide. A rapid and accurate method for specific detection of P. infestans is necessary for determination of late blight in infected fruit, leaves, and tubers. Ribosomal DNA (rDNA) from four isolates of P. infestans representing the four genotypes US1, US6, US7, and US8 was amplified using polymerase chain reaction (PCR) and the universal primers internal transcribed spacer (ITS) 4 and ITS5. PCR products were sequenced using an automated sequencer. Sequences were aligned with published sequences from 5 other Phytophthora species, and a region specific to P. infestans was used to construct a PCR primer (PINF). Over 140 isolates representing 14 species of Phytophthora and at least 13 other genera of fungi and bacteria were used to screen the PINF primer. PCR amplification with primers PINF and ITS5 results in amplification of an approximately 600 base pair product with only isolates of P. infestans from potato and tomato, as well as isolates of P. mirabilis and P. cactorum. P. mirabilis and P. cactorum are not pathogens of potato; however, P. cactorum is a pathogen of tomato. P. infestans and P. cactorum were differentiated by restriction digests of the amplified product. The PINF primer was used with a rapid NaOH lysis technique for direct PCR of P. infestans from infected tomato and potato field samples. The PINF primer will provide a valuable tool for detection of P. infestans in potatoes and tomatoes.


2015 ◽  
Vol 60 (6) ◽  
pp. 1542-1552 ◽  
Author(s):  
Hallie Altshuler ◽  
Reena Roy
Keyword(s):  

2013 ◽  
Vol 88 (2) ◽  
pp. 177-182
Author(s):  
W.Y. Al-Kandari ◽  
S.A. Al-Bustan ◽  
M. Alnaqeeb ◽  
A.M. Isaac

AbstractMicrophallid trematodes are common parasites in marine snails and crustacean hosts at Kuwait Bay. The larval stages of two microphallids,Maritrema eroliaeandProbolocoryphe uca, are difficult to differentiate morphologically. In this study, two PCR-based techniques were established for quick and accurate discrimination between the larval stages of the two microphallid species, employing restriction fragment length polymorphism (PCR-RFLP) and species-specific primers. Both techniques utilized nucleotide differences in the second internal transcribed region (ITS2) of the ribosomal DNA (rDNA) in the two species. For the PCR-RFLP technique, restriction enzymeAvaII was selected and it generated different restriction profiles among the two microphallids. In addition, species-specific primers were prepared for each microphallid species that amplified distinctive fragments. Both techniques showed that the larval stages of the two microphallid species can be identified accurately. However, direct PCR amplification using species-specific primers was more advantageous than the PCR-RFLP technique since it allowed rapid and specific discrimination between the two species. This technique provides a useful tool that can be used in future studies for the study of the distribution of microphallid species and their definitive hosts at different localities of Kuwait Bay.


Sign in / Sign up

Export Citation Format

Share Document