scholarly journals The Organization of the γ-Glutamyl Transferase Genes and Other Low Copy Repeats in Human Chromosome 22q11

1997 ◽  
Vol 7 (5) ◽  
pp. 522-531 ◽  
Author(s):  
John E. Collins ◽  
Andrew J. Mungall ◽  
Karen L. Badcock ◽  
Joanne M. Fay ◽  
Ian Dunham
2001 ◽  
Vol 11 (2) ◽  
pp. 208-217
Author(s):  
Lisa Edelmann ◽  
Pavel Stankiewicz ◽  
Elizabeth Spiteri ◽  
Raj K. Pandita ◽  
Lisa Shaffer ◽  
...  

The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal(gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs.DGCR6L encodes a highly homologous, functional copy ofDGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans.


1992 ◽  
Vol 89 (1) ◽  
pp. 73-78 ◽  
Author(s):  
A.M. Sharkey ◽  
L. McLaren ◽  
M. Carroll ◽  
J. Fantes ◽  
D. Green ◽  
...  

Genomics ◽  
1990 ◽  
Vol 7 (3) ◽  
pp. 299-306 ◽  
Author(s):  
A.H. Carey ◽  
S. Roach ◽  
R. Willamson ◽  
J.P. Dumanski ◽  
M. Nordenskiold ◽  
...  

Genomics ◽  
1998 ◽  
Vol 53 (2) ◽  
pp. 235-238 ◽  
Author(s):  
Kun Wang ◽  
Xiao-Ming Yin ◽  
Neal G. Copeland ◽  
Debra J. Gilbert ◽  
Nancy A. Jenkins ◽  
...  

Genomics ◽  
2003 ◽  
Vol 82 (2) ◽  
pp. 238-244 ◽  
Author(s):  
Hirobumi Sugawara ◽  
Naoki Harada ◽  
Tomoko Ida ◽  
Takafumi Ishida ◽  
David H. Ledbetter ◽  
...  

Author(s):  
Godfrey C. Hoskins

The first serious electron microscooic studies of chromosomes accompanied by pictures were by I. Elvers in 1941 and 1943. His prodigious study, from the manufacture of micronets to the development of procedures for interpreting electron micrographs has gone all but unnoticed. The application of todays sophisticated equipment confirms many of the findings he gleaned from interpretation of images distorted by the electron optics of that time. In his figure 18 he notes periodic arrangement of pepsin sensitive “prickles” now called secondary fibers. In his figure 66 precise regularity of arrangement of these fibers can be seen. In his figure 22 he reproduces Siegbahn's first stereoscopic electron micrograph of chromosomes.The two stereoscopic pairs of electron micrographs of a human chromosome presented here were taken with a metallurgical stage on a Phillips EM200. These views are interpreted as providing photographic evidence that primary fibers (1°F) about 1,200Å thick are surrounded by secondary fibers (2°F) arranged in regular intervals of about 2,800Å in this metanhase human chromosome. At the telomere the primary fibers bend back on themselves and entwine through the center of each of each chromatid. The secondary fibers are seen to continue to surround primary fibers at telomeres. Thus at telomeres, secondary fibers present a surface not unlike that of the side of the chromosome, and no more susceptible to the addition of broken elements from other chromosomes.


2011 ◽  
Vol 39 (03) ◽  
pp. 170-175 ◽  
Author(s):  
H. Rabe

Zusammenfassung Gegenstand: Die Studie präsentiert Referenzbereiche für ein praxisübliches Trockenchemiegerät (Vettest® 8008), die bei als Heimtiere gehaltenen Meerschweinchen ermittelt wurden. Material und Methoden: Bei den Probanden handelte es sich um 58 klinisch gesunde Meerschweinchen im Alter zwischen 8 Wochen und 5 Jahren (24 männlich, 34 weiblich). Die Plasmaproben wurden routinemäßig für die Untersuchung im Vettest® 8008 aufgearbeitet und auf 20 Parameter (s. u.) untersucht. Zur Ermittlung der Referenzwerte wurden mittels SPSS Statistics 17.0 (IBM®) die 2,5%- und 97,5%-Perzentile bestimmt. Ergebnisse: Folgende Referenzwerte wurden ermittelt: 1) Enzyme: alkalische Phosphatase: 50,80–328,10 U/l; Alaninaminotransferase: 41,45 bis 165,35 U/l; Amylase: 726,93–1831,55 U/l; Aspartataminotransferase: 25,25–349,23 U/l; Kreatinkinase: 66,13–1255,40 U/l, γ-Glutamyl- Transferase: 0,45–90,75 U/l; Laktatdehydrogenase: 5,61–1503,00 U/l, Lipase: keine messbare Aktivität. 2) Substrate: Albumin: 17,45 bis 31,65 g/l; Ammoniak: 4,80–225,30 mmol/l; Cholesterin: 0,0 bis 2,06 mmol/l; Kreatinin: 23,90–73,45 μmol/l; Gesamtbilirubin: 2,00 bis 17,60 μmol/l; Gesamteiweiß: 50,00–70,85 g/l; Glukose: 4,62 bis 19,55 mmol/l; Harnstoff-Stickstoff: 2,04–11,28 mmol/l; Triglyzeride: 0,46–4,23 mmol/l. Die Globuline wurden vom Gerät rechnerisch ermittelt: 30,43–42,00 g/l. 3) Elektrolyte: anorganisches Phosphat: 0,72 bis 2,12 mmol/l, Kalzium: 2,58–3,16 mmol/l; Magnesium: 0,72 bis 1,60 mmol/l. Schlussfolgerungen: Der Vergleich mit Angaben aus der Literatur zeigt Abweichungen der Studien untereinander und von der vorliegenden Arbeit. Daraus ist die Schlussfolgerung zu ziehen, dass Referenzwerte unterschiedlicher Untersuchungsverfahren nicht unkritisch für das tierärztliche Sofortlabor übernommen werden können und zur Interpretation von Blutbefunden eigene Referenzwerte für die einzelnen Gerätetypen notwendig sind. Mögliche Ursachen für die Abweichungen könnten in unentdeckten subklinischen Erkrankungen sowie chemischer oder statistischer Methodik liegen.


Sign in / Sign up

Export Citation Format

Share Document