Theoretical Temperature Dependence of the Mean-Square Displacements and Velocities of Surface Atoms of Face-Centered Cubic Crystals

1969 ◽  
Vol 186 (3) ◽  
pp. 962-962
Author(s):  
R. F. Wallis ◽  
B. C. Clark ◽  
Robert Herman ◽  
D. C. Gazis
2019 ◽  
Vol 61 (2) ◽  
pp. 339
Author(s):  
H. Yurtseven ◽  
S.B. Isik ◽  
E. Kilit Dogan

AbstractThe T – P phase diagrams of the halogenomethane compounds (CCl_4 – _ n Br_ n , n = 0, 1, 2, 4) are calculated using a mean field model. By expanding the free energy in terms of the order parameters for the transitions of the liquid (L), rhombohedral (R), face-centered cubic (FCC) and monoclinic (M) phases in those compounds, the phase line equations are derived and they are fitted to the experimental data from the literature. This method of calculating the T – P phase diagram is satisfactory to explain the T – P measurements for the halogenomethane compounds and it can also be applied to two-component systems.


MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 841-846 ◽  
Author(s):  
José Maria C. da Silva Filho ◽  
Victor A. Ermakov ◽  
Luiz G. Bonato ◽  
Ana F. Nogueira ◽  
Francisco C. Marques

ABSTRACTWe show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.


Sign in / Sign up

Export Citation Format

Share Document