The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound

1950 ◽  
Vol 77 (5) ◽  
pp. 717-717 ◽  
Author(s):  
W. G. Proctor ◽  
F. C. Yu

Acoustic measurements on single crystals of HoVO 4 at a frequency of 800 MHz (Bleaney et al., Proc. R. Soc. Lond . A 388, 479 (1983 a )) revealed the presence of both non-resonant acoustic absorption at low appliedfield strengths and resonant absorption at the enhanced nuclear magnetic resonance frequency. In a recent paper (Bleaney & Gregg Proc. R. Soc. Lond . A 413, 313 (1987)) the theory of such acoustic resonance in enhanced nuclear paramagnets has been extended to include other acoustic modes for ions at sites of tetragonal symmetry. In this paper the advantages of using acoustic waves rather than conventional nuclear magnetic resonance for the region 1-2 GHz is described, together with the preparation of transducers of ZnO and the experimental apparatus. Measurements of the acoustic velocities at 1 GHz in HoVO 4 are compared with those of (Goto et al., J. Phys. Soc. Japan 55, 1613 (1986)) at 10 MHz. Further measurements of the non-resonant and resonant attenuation will be presented in papers III and IV (Bleaney et al., Proc. R. Soc. Lond . A 416, 83; 93 (1988)), together with the appropriate theory.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


Sign in / Sign up

Export Citation Format

Share Document