Reflectionless phenomenon in PT -symmetric periodic structures of one-dimensional two-material optical waveguide networks

2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Huizhou Wu ◽  
Xiangbo Yang ◽  
Dongmei Deng ◽  
Hongzhan Liu
2004 ◽  
Vol 70 (16) ◽  
Author(s):  
A. Mandatori ◽  
C. Sibilia ◽  
M. Bertolotti ◽  
S. Zhukovsky ◽  
J. W. Haus ◽  
...  

1996 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sandor Stephen Mester ◽  
Haym Benaroya

Extensive work has been done on the vibration characteristics of perfectly periodic structures. Disorder in the periodic pattern has been found to lead to localization in one-dimensional periodic structures. It is important to understand localization because it causes energy to be concentrated near the disorder and may cause an overestimation of structural damping. A numerical study is conducted to obtain a better understanding of localization. It is found that any mode, even the first, can localize due to the presence of small imperfections.


1995 ◽  
Vol 2 (1) ◽  
pp. 69-95 ◽  
Author(s):  
S. S. Mester ◽  
H. Benaroya

Extensive work has been done on the vibration characteristics of perfectly periodic structures. This article reviews the different methods of analysis from several fields of study, for example solid-state physics and civil, mechanical, and aerospace engineering, used to determine the effects of disorder in one-dimensional (1-D) and 2-D periodic structures. In the work examined, disorder has been found to lead to localization in 1-D periodic structures. It is important to understand localization because it causes energy to be concentrated near the disorder and may cause an overestimation of structural damping. The implications of localization for control are also examined.


1997 ◽  
Vol 56 (4) ◽  
pp. 3166-3174 ◽  
Author(s):  
M. Scalora ◽  
M. J. Bloemer ◽  
A. S. Manka ◽  
J. P. Dowling ◽  
C. M. Bowden ◽  
...  

Author(s):  
Chung-Yuen Hui ◽  
Zezhou Liu ◽  
Nicolas Bain ◽  
Anand Jagota ◽  
Eric R. Dufresne ◽  
...  

The surface of soft solids carries a surface stress that tends to flatten surface profiles. For example, surface features on a soft solid, fabricated by moulding against a stiff-patterned substrate, tend to flatten upon removal from the mould. In this work, we derive a transfer function in an explicit form that, given any initial surface profile, shows how to compute the shape of the corresponding flattened profile. We provide analytical results for several applications including flattening of one-dimensional and two-dimensional periodic structures, qualitative changes to the surface roughness spectrum, and how that strongly influences adhesion.


2020 ◽  
Vol 459 ◽  
pp. 124945
Author(s):  
Haodong Zhu ◽  
Xiangbo Yang ◽  
Zebiao Lin ◽  
Xianhong Liu ◽  
Xinyu Yang

Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


Sign in / Sign up

Export Citation Format

Share Document