microscopic imaging
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 140)

H-INDEX

44
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Jiwon Lee ◽  
Joo Hyoung Kim ◽  
Vladimir Pejovic ◽  
Epimitheas Georgitzikis ◽  
Pawel E. Malinowski ◽  
...  
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1491
Author(s):  
Rise Akasaka ◽  
Masashi Ozawa ◽  
Yuji Nashimoto ◽  
Kosuke Ino ◽  
Hitoshi Shiku

We present a novel methodology based on ion conductance to evaluate the perfusability of vascular vessels in microfluidic devices without microscopic imaging. The devices consisted of five channels, with the center channel filled with fibrin/collagen gel containing human umbilical vein endothelial cells (HUVECs). Fibroblasts were cultured in the other channels to improve the vascular network formation. To form vessel structures bridging the center channel, HUVEC monolayers were prepared on both side walls of the gel. During the culture, the HUVECs migrated from the monolayer and connected to the HUVECs in the gel, and vascular vessels formed, resulting in successful perfusion between the channels after culturing for 3–5 d. To evaluate perfusion without microscopic imaging, Ag/AgCl wires were inserted into the channels, and ion currents were obtained to measure the ion conductance between the channels separated by the HUVEC monolayers. As the HUVEC monolayers blocked the ion current flow, the ion currents were low before vessel formation. In contrast, ion currents increased after vessel formation because of creation of ion current paths. Thus, the observed ion currents were correlated with the perfusability of the vessels, indicating that they can be used as indicators of perfusion during vessel formation in microfluidic devices. The developed methodology will be used for drug screening using organs-on-a-chip containing vascular vessels.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6318
Author(s):  
Jun-Li Xu ◽  
Ana Herrero-Langreo ◽  
Sakshi Lamba ◽  
Mariateresa Ferone ◽  
Amalia G. M. Scannell ◽  
...  

This work investigates the application of reflectance Fourier transform infrared (FTIR) microscopic imaging for rapid, and non-invasive detection and classification between Bacillus subtilis and Escherichia coli cell suspensions dried onto metallic substrates (stainless steel (STS) and aluminium (Al) slides) in the optical density (OD) concentration range of 0.001 to 10. Results showed that reflectance FTIR of samples with OD lower than 0.1 did not present an acceptable spectral signal to enable classification. Two modelling strategies were devised to evaluate model performance, transferability and consistency among concentration levels. Modelling strategy 1 involves training the model with half of the sample set, consisting of all concentrations, and applying it to the remaining half. Using this approach, for the STS substrate, the best model was achieved using support vector machine (SVM) classification, providing an accuracy of 96% and Matthews correlation coefficient (MCC) of 0.93 for the independent test set. For the Al substrate, the best SVM model produced an accuracy and MCC of 91% and 0.82, respectively. Furthermore, the aforementioned best model built from one substrate was transferred to predict the bacterial samples deposited on the other substrate. Results revealed an acceptable predictive ability when transferring the STS model to samples on Al (accuracy = 82%). However, the Al model could not be adapted to bacterial samples deposited on STS (accuracy = 57%). For modelling strategy 2, models were developed using one concentration level and tested on the other concentrations for each substrate. Results proved that models built from samples with moderate (1 OD) concentration can be adapted to other concentrations with good model generalization. Prediction maps revealed the heterogeneous distribution of biomolecules due to the coffee ring effect. This work demonstrated the feasibility of applying FTIR to characterise spectroscopic fingerprints of dry bacterial cells on substrates of relevance for food processing.


Author(s):  
Zhen Liu ◽  
Tao Cheng ◽  
Stephan Düwel ◽  
Ziying Jian ◽  
Geoffrey J. Topping ◽  
...  

Abstract Background Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. Methods The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin–eosin (HE) stained for comparison with multimodal in vivo imaging. Results The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. Conclusions The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging.


2021 ◽  
Author(s):  
Yosri Haddad ◽  
Jacques Chrétien ◽  
Jean Charles Beugnot ◽  
Adrien Godet ◽  
Kien Phan Huy ◽  
...  

Open Biology ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Ana Kalichava ◽  
Torsten Ochsenreiter

The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.


2021 ◽  
Vol 8 (05) ◽  
Author(s):  
Sumagna Dey ◽  
Pradyut Nath ◽  
Saptarshi Biswas ◽  
Subhrapratim Nath ◽  
Ankur Ganguly

Sign in / Sign up

Export Citation Format

Share Document