scholarly journals Continuous-time quantum walks on planar lattices and the role of the magnetic field

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Luca Razzoli ◽  
Matteo G. A. Paris ◽  
Paolo Bordone
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


1995 ◽  
Vol 12 (2) ◽  
pp. 180-185 ◽  
Author(s):  
D. J. Galloway ◽  
C. A. Jones

AbstractThis paper discusses problems which have as their uniting theme the need to understand the coupling between a stellar convection zone and a magnetically dominated corona above it. Interest is concentrated on how the convection drives the atmosphere above, loading it with the currents that give rise to flares and other forms of coronal activity. The role of boundary conditions appears to be crucial, suggesting that a global understanding of the magnetic field system is necessary to explain what is observed in the corona. Calculations are presented which suggest that currents flowing up a flux rope return not in the immediate vicinity of the rope but rather in an alternative flux concentration located some distance away.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2018 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Anup Kumar ◽  
Prakash Mondal ◽  
Claudio Fontanesi

Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.


2008 ◽  
Vol 56 (6) ◽  
pp. 852-855 ◽  
Author(s):  
E. Kallio ◽  
R.A. Frahm ◽  
Y. Futaana ◽  
A. Fedorov ◽  
P. Janhunen

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Matteo A. C. Rossi ◽  
Claudia Benedetti ◽  
Massimo Borrelli ◽  
Sabrina Maniscalco ◽  
Matteo G. A. Paris

Sign in / Sign up

Export Citation Format

Share Document