scholarly journals Thermometry of one-dimensional Bose gases with neural networks

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Frederik Møller ◽  
Thomas Schweigler ◽  
Mohammadamin Tajik ◽  
João Sabino ◽  
Federica Cataldini ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Xinxing Liu ◽  
Xiaoji Zhou ◽  
Wei Zhang ◽  
Thibault Vogt ◽  
Bo Lu ◽  
...  

2007 ◽  
Vol 17 (03) ◽  
pp. 953-963 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this paper we demonstrate chaos, two-tori and limit cycles in a new family of Cellular Neural Networks which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots are presented as well. Furthermore, we confirm the nature of limit cycle, chaos and two-tori by studying Poincaré maps.


2006 ◽  
Vol 16 (08) ◽  
pp. 2177-2190
Author(s):  
MAURO DI MARCO ◽  
CHIARA GHILARDI

This paper investigates the issue of robustness of complete stability of standard Cellular Neural Networks (CNNs) with respect to small perturbations of the nominally symmetric interconnections. More specifically, a class of circular one-dimensional (1-D) CNNs with nearest-neighbor interconnections only, is considered. The class has sparse interconnections and is subject to perturbations which preserve the interconnecting structure. Conditions assuring that the perturbed CNN has a unique equilibrium point at the origin, which is unstable, are provided in terms of relative magnitude of the perturbations with respect to the nominal interconnection weights. These conditions allow one to characterize regions in the perturbation parameter space where there is loss of stability for the perturbed CNN. In turn, this shows that even for sparse interconnections and structure preserving perturbations, robustness of complete stability is not guaranteed in the general case.


2008 ◽  
Vol 77 (5) ◽  
Author(s):  
E. Fersino ◽  
G. Mussardo ◽  
A. Trombettoni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document