scholarly journals Search by lackadaisical quantum walk with symmetry breaking

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Jacob Rapoza ◽  
Thomas G. Wong
Author(s):  
Makio Kawasaki ◽  
Ken Mochizuki ◽  
Norio Kawakami ◽  
Hideaki Obuse

Abstract Topological phases and the associated multiple edge states are studied for parity and time-reversal ($\mathcal{PT}$)-symmetric non-Hermitian open quantum systems by constructing a non-unitary three-step quantum walk retaining $\mathcal{PT}$ symmetry in one dimension. We show that the non-unitary quantum walk has large topological numbers of the $\mathbb{Z}$ topological phase and numerically confirm that multiple edge states appear as expected from the bulk–edge correspondence. Therefore, the bulk–edge correspondence is valid in this case. Moreover, we study the stability of the multiple edge states against a symmetry-breaking perturbation so that the topological phase is reduced to $\mathbb{Z}_2$ from $\mathbb{Z}$. In this case, we find that the number of edge states does not become one unless a pair of edge states coalesce at an exceptional point. Thereby, this is a new kind of breakdown of the bulk–edge correspondence in non-Hermitian systems. The mechanism of the prolongation of edge states against the symmetry-breaking perturbation is unique to non-Hermitian systems with multiple edge states and anti-linear symmetry. Toward experimental verifications, we propose a procedure to determine the number of multiple edge states from the time evolution of the probability distribution.


Author(s):  
D.J. Eaglesham

Convergent Beam Electron Diffraction is now almost routinely used in the determination of the point- and space-groups of crystalline samples. In addition to its small-probe capability, CBED is also postulated to be more sensitive than X-ray diffraction in determining crystal symmetries. Multiple diffraction is phase-sensitive, so that the distinction between centro- and non-centro-symmetric space groups should be trivial in CBED: in addition, the stronger scattering of electrons may give a general increase in sensitivity to small atomic displacements. However, the sensitivity of CBED symmetry to the crystal point group has rarely been quantified, and CBED is also subject to symmetry-breaking due to local strains and inhomogeneities. The purpose of this paper is to classify the various types of symmetry-breaking, present calculations of the sensitivity, and illustrate symmetry-breaking by surface strains.CBED symmetry determinations usually proceed by determining the diffraction group along various zone axes, and hence finding the point group. The diffraction group can be found using either the intensity distribution in the discs


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


2011 ◽  
Author(s):  
Kimberley D. Orsten ◽  
Mary C. Portillo ◽  
James R. Pomerantz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document