scholarly journals Nonclassical states of light in a nonlinear Michelson interferometer

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Bijoy John Mathew ◽  
Anil Shaji
2008 ◽  
Vol 128 (6) ◽  
pp. 285-291
Author(s):  
Takumi Okada ◽  
Kazuhiro Komori ◽  
Xue-Lun Wang ◽  
Mutsuo Ogura ◽  
Noriaki Tsurumachi

2000 ◽  
Vol 627 ◽  
Author(s):  
Gabriel Popescu ◽  
Aristide Dogariu

ABSTRACTIn many industrial applications involving granular media, knowledge about the structural transformations suffered during the industrial process is desirable. Optical techniques are noninvasive, fast, and versatile tools for monitoring such transformations. We have recently introduced optical path-length spectroscopy as a new technique for random media investigation. The principle of the method is to use a partially coherent source in a Michelson interferometer, where the fields from a reference mirror and the sample are combined to obtain an interference signal. When the system under investigation is a multiple-scattering medium, by tuning the optical length of the reference arm, the optical path-length probability density of light backscattered from the sample is obtained. This distribution carries information about the structural details of the medium. In the present paper, we apply the technique of optical path-length spectroscopy to investigate inhomogeneous distributions of particulate dielectrics such as ceramics and powders. The experiments are performed on suspensions of systems with different solid loads, as well as on powders and suspensions of particles with different sizes. We show that the methodology is highly sensitive to changes in volume concentration and particle size and, therefore, it can be successfully used for real-time monitoring. In addition, the technique is fiber optic-based and has all the advantages associated with the inherent versatility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Piotr Ryczkowski ◽  
Caroline G. Amiot ◽  
John M. Dudley ◽  
Goëry Genty

AbstractWe demonstrate computational spectral-domain ghost imaging by encoding complementary Fourier patterns directly onto the spectrum of a superluminescent laser diode using a programmable spectral filter. Spectral encoding before the object enables uniform spectral illumination across the beam profile, removing the need for light collection optics and yielding increased signal-to-noise ratio. In addition, the use of complementary Fourier patterns allows reduction of deleterious of parasitic light effects. As a proof-of-concept, we measure the wavelength-dependent transmission of a Michelson interferometer and a wavelength-division multiplexer. Our results open new perspectives for remote broadband spectral measurements.


2021 ◽  
Vol 503 (2) ◽  
pp. 3032-3043
Author(s):  
Yinhua Wu ◽  
Shasha Chen ◽  
Pengchong Wang ◽  
Shun Zhou ◽  
Yutao Feng ◽  
...  

ABSTRACT The coherent-dispersion spectrometer (CODES) is a new exoplanet detection instrument using the radial velocity (RV) method. This attempts mainly to improve environmental sensitivity and energy utilization by using an asymmetric, common-path Sagnac interferometer instead of a traditional Michelson interferometer. In order to verify its feasibility and to choose the appropriate key parameters to obtain the optimal performance, research on data processing for the design stage of the CODES is performed by systematic simulation and analysis. First, the instrument modelling is carried out for further data analysis according to the principle of the CODES, and the reliability of the model is verified by experiments. Second, the influence of key parameters on fringe visibility is analysed systematically, which provides a certain reference for the choice of the key parameters. Third, the RV inversion method for the CODES is proposed and optimized according to the related analysis results so as to promote RV inversion precision. Finally, the recommended values for the key parameters of the CODES are given. The experimental results show that the data processing error of RV inversion is less than 0.6 m s–1 within the recommended range of key parameters. This indicates that the scheme of the CODES is reasonable and feasible, and that the proposed data processing method is effective and well matched with the instrument design.


2020 ◽  
pp. 1-1
Author(s):  
Kaiyue Qi ◽  
Yundong Zhang ◽  
Jianfeng Sun ◽  
Ying Guo ◽  
Ying Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document