Statistical mechanics of one-dimensional complex scalar fields with phase anisotropy

1979 ◽  
Vol 20 (5) ◽  
pp. 2213-2224 ◽  
Author(s):  
J. F. Currie ◽  
S. Sarker ◽  
A. R. Bishop ◽  
S. E. Trullinger
1980 ◽  
Vol 22 (2) ◽  
pp. 477-496 ◽  
Author(s):  
J. F. Currie ◽  
J. A. Krumhansl ◽  
A. R. Bishop ◽  
S. E. Trullinger

Author(s):  
A. Yu. Loginov ◽  
V. V. Gauzshtein

Abstract In the present paper, we consider a $$(1 + 1)$$(1+1)-dimensional gauge model consisting of two complex scalar fields interacting with each other through an Abelian gauge field. When the model’s gauge coupling constants are set to zero, the model possesses non-gauged Q-ball and kink solutions that do not interact with each other. It is shown here that for nonzero gauge coupling constants, the model has a soliton solution describing the system that consists of interacting Q-ball and kink components. These two components of the kink-Q-ball system have opposite electric charges, meaning that the total electric charge of the system vanishes. The properties of the kink-Q-ball system are studied both analytically and numerically. In particular, it was found that the system possesses a nonzero electric field and is unstable with respect to small perturbations in the fields.


1983 ◽  
Vol 28 (1) ◽  
pp. 289-299 ◽  
Author(s):  
Rahul Pandit ◽  
C. Tannous ◽  
J. A. Krumhansl

2011 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Tran Huu Phat ◽  
Phan Thi Duyen

The two interacting complex scalar fields at finite density is considered in the mean field approximation. It is shown that although the symmetry is spontaneously broken for the chemical potentials bigger than the meson masses in vacuum, but the Goldstone theorem is not preserved in broken phase. Then two mesons are condensed and their condensates turn out to be two-gap superconductor which is signaled by the appearance of the Meissner effect as well as the Abrikosov and non-Abrikosov vortices. Finally, there exhibits domain wall which is the plane, where two condensates flowing in opposite directions collide and generate two types of vortices with cores in the wall.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2144
Author(s):  
Arnaud Ferrari ◽  
Nikolaos Rompotis

One doublet of complex scalar fields is the minimal content of the Higgs sector in order to achieve spontaneous electroweak symmetry breaking and, in turn, to generate the masses of fundamental particles in the Standard Model. However, several theories beyond the Standard Model predict a nonminimal Higgs sector and introduce additional singlets, doublets or even higher-order weak isospin representations, thereby yielding additional Higgs bosons. With its high proton–proton collision energy (13 TeV during Run-2), the Large Hadron Collider opens a new window towards the exploration of extended Higgs sectors. This review article summarises the current state-of-the-art experimental results recently obtained in searches for new neutral and charged Higgs bosons with a partial or full Run-2 dataset.


Sign in / Sign up

Export Citation Format

Share Document