Total cross sections for elastic and inelastic scattering of charged particles by hydrogen atoms

1982 ◽  
Vol 26 (5) ◽  
pp. 2567-2585 ◽  
Author(s):  
S. Rosendorff ◽  
A. Birman
Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


2016 ◽  
Vol 94 (4) ◽  
pp. 431-436
Author(s):  
S.A. Elkilany

Inelastic collisions of protons with rubidium atoms are treated for the first time within the framework of the three channel coupled static, and frozen core approximations. The method is used for calculating partial and total cross sections with the assumption that only three channels (elastic; non-excited hydrogen, 1s-state; and excited hydrogen, 2s-state) are open. We have used the Lipmann–Schwinger equation and the Green’s functions iterative numerical method technique to solve the derived coupled integro-differential equations to obtain the computer code. The present results for total hydrogen formation cross sections are in agreement with results of other available ones in a wide range of incident energy.


2015 ◽  
Vol 93 (11) ◽  
pp. 1283-1291 ◽  
Author(s):  
S.A. Elkilany

The inelastic scattering of a proton with a caesium atom is treated for the first time as a three-channel problem within the framework of the improved coupled static approximation with the assumption that the ground (1s state) and excited (2s state) hydrogen formation channels are open for seven values of the total angular momentum, [Formula: see text] at energies between 50 and 500 keV. The Green’s function iterative numerical method is used to obtain the computer code to calculate iterative partial cross sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. Present results give reasonable agreement with previous results.


Sign in / Sign up

Export Citation Format

Share Document