Infrared-laser control of vibrational state redistribution during molecular dissociation: The time-dependent flux method in model simulations forHONO2in the excited electronic state

1999 ◽  
Vol 60 (5) ◽  
pp. 3663-3666 ◽  
Author(s):  
M. Oppel ◽  
G. K. Paramonov
2012 ◽  
Vol 11 (06) ◽  
pp. 1323-1330 ◽  
Author(s):  
XUE-JIN HU ◽  
WEI ZHANG ◽  
YIN HUANG ◽  
JUN-FENG YANG ◽  
SHU-LIN CONG

We investigate theoretically the preparation of ultracold photoassociated Cs 2 molecules in the lowest vibrational level of the ground electronic state via the stimulated Raman adiabatic passage (STIRAP) by solving the time-dependent Schrödinger equation using the mapped Fourier grid method. A negative chirped laser pulse is used to produce the unstable photoassociated molecules in the excited electronic state. A dump pulse is utilized to transfer a partial population of the unstable photoassociated molecules to the vibrational v″ = 18 level of the ground electronic state. This part of population is then transferred to the v″ = 0 level of the ground electronic state by the pump and Stokes laser pulses via an intermediate state which is taken to be the v′ = 7 level of the excited electronic state, forming the stable photoassociated molecules. The population transfer efficiency from v″ = 18 to v″ = 0 in the ground electronic state reaches 96.2% via the STIRAP.


2013 ◽  
Vol 138 (9) ◽  
pp. 094318 ◽  
Author(s):  
T. Rajagopala Rao ◽  
Sugata Goswami ◽  
S. Mahapatra ◽  
B. Bussery-Honvault ◽  
P. Honvault

2019 ◽  
Vol 70 (10) ◽  
pp. 3538-3544
Author(s):  
Alina Costina Luca ◽  
Ana Cezarina Morosanu ◽  
Irina Macovei ◽  
Dan Gheorghe Dimitriu ◽  
Dana Ortansa Dorohoi ◽  
...  

Electro-optical parameters of fluorescein molecule in the second excited electronic state and information on the interactions with solvents were obtained from a solvatochromic study. Parameters of the solvents such as the refractive index, electrical permittivity and Kamlet-Taft parameters (hydrogen bond acidity and basicity) were related with the experimentally recorded shifts of UV absorption spectral band of fluorescein dissolved in several solvents. Through a variational method, the electric dipole moment and polarizability in excited state of fluorescein molecule were estimated. The calculus requires some parameters of the fluorescein molecule in the ground electronic state, which were determined through a quantum-mechanical study.


The spectrum of the flame of carbon monoxide burning in air and in oxygen at reduced pressure has been photographed on plates of high contrast which display the band spectrum clearly above the continuous background. Greater detail has been obtained than has been recorded previously and new measurements are given. The structure of the spectrum has been studied systematically. It is shown that the bands occur in pairs with a separation of about 60 cm. -1 , this separation being due probably to the rotational structure. Various wave-number differences are found to occur frequently, and many of the strong bands are arranged in arrays using intervals of 565 and 2065 cm. -1 . The possible origin of the spectrum is discussed. The choice of emitter is limited to a polyatomic oxide of carbon, of which carbon dioxide is the most likely. The spectrum of the suboxide C 3 O 2 shows some resemblance to the flame bands, but this molecule is improbable as the emitter on other grounds. A peroxide C0 3 is also a possibility, but no evidence for the presence of this has been obtained from experiments on the slow combustion of carbon monoxide. Carbon dioxide in gaseous or liquid form is transparent through the visible and quartz ultra-violet, and the flame bands are not obtained from CO 2 in discharge tubes. Comparison with the Schumann-Runge bands of oxygen shows that it is possible that the flame bands may form part of the absorption band system of CO 2 which is known to exist below 1700 A if there is a big change in shape or size of the molecule in the two electronic states. The electronic energy levels of CO 2 are discussed. Since normal CO 2 is not built up from normal CO and oxygen, an electronic rearrangement of the CO 2 must occur after the combustion process. Mulliken has suggested that the molecule in the first excited electronic state, corresponding to absorption below 1700 A, may have a triangular form. The frequencies obtained from the flame bands are compared with the infra-red frequencies of CO 2 . The 565 interval may be identified with the transverse vibration v 2 , indicating that the excited electronic state is probably triangular in shape. The 2065 interval cannot, however, be identified with the asymmetric vibration v 3 with any certainty. If the excited electronic state of CO 2 is triangular, then molecules formed during the combustion by transitions from this level to the ground state may be “vibrationally activated”. This is probably the reason for many of the peculiarities of the combustion of carbon monoxide.


1979 ◽  
Vol 65 (2) ◽  
pp. 293-295 ◽  
Author(s):  
M. Asano ◽  
D. Mongeau ◽  
D. Nicollin ◽  
R. Sasseville ◽  
J.A. Koningstein

Sign in / Sign up

Export Citation Format

Share Document