Combined effect of electric field and spin-orbit interaction on doubly excited Feshbach resonance states of helium below theN=2threshold

2003 ◽  
Vol 68 (3) ◽  
Author(s):  
I. A. Ivanov ◽  
Y. K. Ho
2013 ◽  
Vol 1505 ◽  
Author(s):  
Aditi Goswami ◽  
Yue Liu ◽  
Feilong Liu ◽  
P. Paul Ruden ◽  
Darryl L. Smith

ABSTRACTGraphene is a promising material for electronic and spintronic applications due to its high carrier mobility and low intrinsic spin-orbit interaction. However, extrinsic effects may easily dominate intrinsic scattering mechanisms. The scattering mechanisms investigated here are associated non-magnetic, charged impurities in the substrate (e.g. SiO2) beneath the graphene layer. Such impurities cause an electric field that extends through the graphene and has a non-vanishing perpendicular component. Consequently, the impurity, in addition to the conventional elastic, spin-conserving scattering can give rise to spin-flip processes. The latter is a consequence of a spatially varying Rashba spin-orbit interaction caused by the electric field of the impurity in the substrate. Scattering cross-sections are calculated and, for assumed impurity distributions, relaxation times are estimated.


Author(s):  
Manoj Kumar ◽  
Pradip Kumar Jha ◽  
Aranya B. Bhattacherjee

Here, the influence of external magnetic field on the optical absorption and refractive index changes for a parabolically confined quantum dot in the presence of Rashba spin orbit interaction have been investigated. The results are presented as a function of quantum confinement potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate the important influence of magnetic field on the peak positions of absorption coefficient and refractive index changes. For Quantum Wire, the energy dispersion relations are studied of the spin split subbands subjected to external transverse electric and magnetic fields in the presence of Rashba spin orbit interaction. For an infinite superlattice wire, it is found that the energy gaps between different subbands are shifted due to Rashba spin orbit interaction and external electric field. Here we have also investigated the influence of external electric field and magnetic field on the optical absorption of a parabolic confinement wire.


Sign in / Sign up

Export Citation Format

Share Document