scholarly journals Highly nonclassical photon statistics in parametric down-conversion

2006 ◽  
Vol 73 (3) ◽  
Author(s):  
Edo Waks ◽  
Barry C. Sanders ◽  
Eleni Diamanti ◽  
Yoshihisa Yamamoto
2004 ◽  
Vol 92 (11) ◽  
Author(s):  
Edo Waks ◽  
Eleni Diamanti ◽  
Barry C. Sanders ◽  
Stephen D. Bartlett ◽  
Yoshihisa Yamamoto

2009 ◽  
Vol 80 (5) ◽  
Author(s):  
Wolfgang Mauerer ◽  
Malte Avenhaus ◽  
Wolfram Helwig ◽  
Christine Silberhorn

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4964
Author(s):  
Pavel Prudkovskii ◽  
Andrey Leontyev ◽  
Kirill Kuznetsov ◽  
Galiya Kitaeva

Statistical distributions of the analog readings of an antenna-coupled THz superconducting bolometer were measured and analyzed under a special type of irradiation by low-energy fluxes of THz photons with Poisson photon statistics and controllable mean photon numbers. The photons were generated via low-gain parametric down-conversion in pulse-pumped Mg:LiNbO3 crystal placed to a cooled cryostat together with the bolometer NbN film. Results of theoretical approximation of experimental histograms reveal the discrete nature of THz detection by superconducting bolometers and open a way for studying their quantum characteristics. It is shown that bolometer readings per pulse consist of discrete counts (“single charges”), with the mean number linearly dependent on the number of input photons. Contributions of single counts to a total analog reading are statistically distributed according to the normal law, with average values slightly depending on the number of counts in each reading. A general formula is proposed to describe the relationship between continuous statistical distribution of the bolometer readings and discrete quantum statistics of the incident photons.


JETP Letters ◽  
2020 ◽  
Vol 112 (5) ◽  
pp. 269-273
Author(s):  
V. D. Sultanov ◽  
K. A. Kuznetsov ◽  
A. A. Leontyev ◽  
G. Kh. Kitaeva

Sign in / Sign up

Export Citation Format

Share Document