scholarly journals Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

2006 ◽  
Vol 74 (5) ◽  
Author(s):  
W. A. Bryan ◽  
W. R. Newell ◽  
J. H. Sanderson ◽  
A. J. Langley
2009 ◽  
Vol 366 (1-3) ◽  
pp. 71-84 ◽  
Author(s):  
Thanh-Tung Nguyen-Dang ◽  
Michel Peters ◽  
Sen-Ming Wang ◽  
François Dion

2004 ◽  
Vol 22 (1) ◽  
pp. 45-50 ◽  
Author(s):  
B. SHOKRI ◽  
A.R. NIKNAM ◽  
M. SMIRNOV

Multiple ionization of large clusters when they are irradiated by an intense ultrashort laser pulse is investigated. Different mechanisms, responsible for cluster ionization, are investigated. It is found that the ionization of large clusters, irradiated by a strong intense ultrashort laser pulse, is realized by means of the surface thermoemission.


2009 ◽  
Vol 08 (06) ◽  
pp. 1197-1215 ◽  
Author(s):  
KAI-JUN YUAN ◽  
ZHENG-TANG LIU ◽  
JIE YU ◽  
MAO-DU CHEN ◽  
SHU-LIN CONG

The above threshold dissociation (ATD) of the HD+ molecular ion in a linearly polarized femtosecond laser field is theoretically studied using three-dimensional time-dependent quantum wave packet method. Based on the Born–Oppenheimer approximation (BOA), calculations are performed on two electronic states, the ground state 1sσ and the excited state 2pσ. The energy-dependent distributions of the dissociated fragments, resulting from the ATD, are calculated by using an asymptotic-flow expression in the momentum space. The numerical results demonstrate that, in the laser field of wavelength λ = 800 nm and full-width at half-maximum (FWHM) τ = 30 fs , only two-photon dissociation is observable at a weaker pulse peak intensity, 5.0 × 1012 W cm -2, while at an intense intensity, 1.5 × 1015 W cm -2, the dissociated fragments resulting from four-photon absorption dominates over the photodissociation process. These results are consistent with the experimental observation of Orr et al. [Orr PA et al., Phys Rev Lett98:163001, 2007]. The ac Stark-shift caused by intense laser field will change the kinetic energies of the fragments. The ATD phenomena are quantitatively interpreted in terms of the concept of light-induced potential. The molecular rotation and alignment have some effects on the kinetic energy spectrum of the dissociated fragments. The molecular rotation reduces the ac Stark-shift and broadens the peaks of kinetic energy spectra of the dissociated fragments. However, the intense laser field can effectively align the molecule and is helpful to increase the ATD probability. The ATD spectrum is related to the initial quantum numbers J0 and M0 of the molecule. The ATD spectrum of HD+ is calculated at a limited thermal temperature.


2005 ◽  
Vol 404 (4-6) ◽  
pp. 365-369 ◽  
Author(s):  
Kazuya Shiratori ◽  
Katsuyuki Nobusada ◽  
Kazuhiro Yabana

2011 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Bhattacharyya ◽  
Mina Mazumder ◽  
J. Chakrabarti ◽  
F. H. M. Faisal

2011 ◽  
Vol 80 (1) ◽  
pp. 89-93 ◽  
Author(s):  
F. Ungan ◽  
E. Kasapoglu ◽  
C. A. Duque ◽  
U. Yesilgul ◽  
S. Şakiroglu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document