scholarly journals Efficient optimal minimum error discrimination of symmetric quantum states

2010 ◽  
Vol 81 (1) ◽  
Author(s):  
Antonio Assalini ◽  
Gianfranco Cariolaro ◽  
Gianfranco Pierobon
2015 ◽  
Vol 15 (9&10) ◽  
pp. 737-758
Author(s):  
Weien Chen ◽  
Yongzhi Cao ◽  
Hanpin Wang ◽  
Yuan Feng

Error probability is a popular and well-studied optimization criterion in discriminating non-orthogonal quantum states. It captures the threat from an adversary who can only query the actual state once. However, when the adversary is able to use a brute-force strategy to query the state, discrimination measurement with minimum error probability does not necessarily minimize the number of queries to get the actual state. In light of this, we take Massey's guesswork as the underlying optimization criterion and study the problem of minimum guesswork discrimination. We show that this problem can be reduced to a semidefinite programming problem. Necessary and sufficient conditions when a measurement achieves minimum guesswork are presented. We also reveal the relation between minimum guesswork and minimum error probability. We show that the two criteria generally disagree with each other, except for the special case with two states. Both upper and lower information-theoretic bounds on minimum guesswork are given. For geometrically uniform quantum states, we provide sufficient conditions when a measurement achieves minimum guesswork. Moreover, we give the necessary and sufficient condition under which making no measurement at all would be the optimal strategy.


Author(s):  
Thomas P. W. Cope ◽  
Stefano Pirandola

AbstractThe class of quantum states known as Werner states have several interesting properties, which often serve to illuminate unusual properties of quantum information. Closely related to these states are the Holevo- Werner channels whose Choi matrices are Werner states. Exploiting the fact that these channels are teleportation covariant, and therefore simulable by teleportation, we compute the ultimate precision in the adaptive estimation of their channel-defining parameter. Similarly, we bound the minimum error probability affecting the adaptive discrimination of any two of these channels. In this case, we prove an analytical formula for the quantum Chernoff bound which also has a direct counterpart for the class of depolarizing channels. Our work exploits previous methods established in [Pirandola and Lupo, PRL


1997 ◽  
Vol 36 (6) ◽  
pp. 1269-1288 ◽  
Author(s):  
Masashi Ban ◽  
Keiko Kurokawa ◽  
Rei Momose ◽  
Osamu Hirota

2006 ◽  
Vol 20 (11n13) ◽  
pp. 1528-1535 ◽  
Author(s):  
LEV VAIDMAN ◽  
IZHAR NEVO

Although for some nonlocal variables the standard quantum measurements which are reliable, instantaneous, and nondemolition, are impossible, demolition reliable instantaneous measurements of all variables are possible. It is shown that this is correct also in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of composite quantum systems with quantum states evolving both forward and backward in time are measurable in a demolition way. The result follows from the possibility to reverse with certainty the time direction of backward evolving quantum states.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 671 ◽  
Author(s):  
Jihwan Kim ◽  
Donghoon Ha ◽  
Younghun Kwon

This study considers the minimum error discrimination of two quantum states in terms of a two-party zero-sum game, whose optimal strategy is a minimax strategy. A minimax strategy is one in which a sender chooses a strategy for a receiver so that the receiver may obtain the minimum information about quantum states, but the receiver performs an optimal measurement to obtain guessing probability for the quantum ensemble prepared by the sender. Therefore, knowing whether the optimal strategy of the game is unique is essential. This is because there is no alternative if the optimal strategy is unique. This paper proposes the necessary and sufficient condition for an optimal strategy of the sender to be unique. Also, we investigate the quantum states that exhibit the minimum guessing probability when a sender’s minimax strategy is unique. Furthermore, we show that a sender’s minimax strategy and a receiver’s minimum error strategy cannot be unique if one can simultaneously diagonalize two quantum states, with the optimal measurement of the minimax strategy. This implies that a sender can confirm that the optimal strategy of only a single side (a sender or a receiver but not both of them) is unique by preparing specific quantum states.


Sign in / Sign up

Export Citation Format

Share Document