scholarly journals Separability criteria and entanglement witnesses for symmetric quantum states

2009 ◽  
Vol 98 (4) ◽  
pp. 617-622 ◽  
Author(s):  
G. Tóth ◽  
O. Gühne
2015 ◽  
Vol 15 (7&8) ◽  
pp. 694-720 ◽  
Author(s):  
Srinivasan Arunachalam ◽  
Nathaniel Johnston ◽  
Vincent Russo

The absolute separability problem asks for a characterization of the quantum states $\rho \in M_m\otimes M_n$ with the property that $U\rho U^\dagger$ is separable for all unitary matrices $U$. We investigate whether or not it is the case that $\rho$ is absolutely separable if and only if $U\rho U^\dagger$ has positive partial transpose for all unitary matrices $U$. In particular, we develop an easy-to-use method for showing that an entanglement witness or positive map is unable to detect entanglement in any such state, and we apply our method to many well-known separability criteria, including the range criterion, the realignment criterion, the Choi map and its generalizations, and the Breuer--Hall map. We also show that these two properties coincide for the family of isotropic states, and several eigenvalue results for entanglement witnesses are proved along the way that are of independent interest.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 561
Author(s):  
Carlo Marconi ◽  
Albert Aloy ◽  
Jordi Tura ◽  
Anna Sanpera

Entanglement in symmetric quantum states and the theory of copositive matrices are intimately related concepts. For the simplest symmetric states, i.e., the diagonal symmetric (DS) states, it has been shown that there exists a correspondence between exceptional (non-exceptional) copositive matrices and non-decomposable (decomposable) Entanglement Witnesses (EWs). Here we show that EWs of symmetric, but not DS, states can also be constructed from extended copositive matrices, providing new examples of bound entangled symmetric states, together with their corresponding EWs, in arbitrary odd dimensions.


2019 ◽  
Vol 32 (02) ◽  
pp. 2030001 ◽  
Author(s):  
J. Avron ◽  
O. Kenneth

This is a review of the geometry of quantum states using elementary methods and pictures. Quantum states are represented by a convex body, often in high dimensions. In the case of [Formula: see text] qubits, the dimension is exponentially large in [Formula: see text]. The space of states can be visualized, to some extent, by its simple cross sections: Regular simplexes, balls and hyper-octahedra. a When the dimension gets large, there is a precise sense in which the space of states resembles, almost in every direction, a ball. The ball turns out to be a ball of rather low purity states. We also address some of the corresponding, but harder, geometric properties of separable and entangled states and entanglement witnesses. “All convex bodies behave a bit like Euclidean balls.” Keith Ball


2010 ◽  
Vol 81 (1) ◽  
Author(s):  
Antonio Assalini ◽  
Gianfranco Cariolaro ◽  
Gianfranco Pierobon

1997 ◽  
Vol 36 (6) ◽  
pp. 1269-1288 ◽  
Author(s):  
Masashi Ban ◽  
Keiko Kurokawa ◽  
Rei Momose ◽  
Osamu Hirota

2006 ◽  
Vol 20 (11n13) ◽  
pp. 1528-1535 ◽  
Author(s):  
LEV VAIDMAN ◽  
IZHAR NEVO

Although for some nonlocal variables the standard quantum measurements which are reliable, instantaneous, and nondemolition, are impossible, demolition reliable instantaneous measurements of all variables are possible. It is shown that this is correct also in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of composite quantum systems with quantum states evolving both forward and backward in time are measurable in a demolition way. The result follows from the possibility to reverse with certainty the time direction of backward evolving quantum states.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Alexander Meill ◽  
David A. Meyer

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 262 ◽  
Author(s):  
David Schmid ◽  
Denis Rosset ◽  
Francesco Buscemi

In space-like separated experiments and other scenarios where multiple parties share a classical common cause but no cause-effect relations, quantum theory allows a variety of nonsignaling resources which are useful for distributed quantum information processing. These include quantum states, nonlocal boxes, steering assemblages, teleportages, channel steering assemblages, and so on. Such resources are often studied using nonlocal games, semiquantum games, entanglement-witnesses, teleportation experiments, and similar tasks. We introduce a unifying framework which subsumes the full range of nonsignaling resources, as well as the games and experiments which probe them, into a common resource theory: that of local operations and shared randomness (LOSR). Crucially, we allow these LOSR operations to locally change the type of a resource, so that players can convert resources of any type into resources of any other type, and in particular into strategies for the specific type of game they are playing. We then prove several theorems relating resources and games of different types. These theorems generalize a number of seminal results from the literature, and can be applied to lessen the assumptions needed to characterize the nonclassicality of resources. As just one example, we prove that semiquantum games are able to perfectly characterize the LOSR nonclassicality of every resource of any type (not just quantum states, as was previously shown). As a consequence, we show that any resource can be characterized in a measurement-device-independent manner.


Sign in / Sign up

Export Citation Format

Share Document