unambiguous discrimination
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen-Hai Zhang ◽  
Lan-Lan Li ◽  
Ke Zhang ◽  
Wen-Yan Nie

2021 ◽  
Author(s):  
Donghoon Ha ◽  
Jeong San Kim

Abstract The phenomenon of nonlocality without entanglement(NLWE) arises in discriminating multi-party quantum separable states. Recently, it has been found that the post-measurement information about the prepared subensemble can lock or unlock NLWE in minimum-error discrimination of non-orthogonal separable states. Thus it is natrual to ask whether the availability of the post-measurement information can influence on the occurrence of NLWE even in other state-discrimination stratigies. Here, we show that the post-measurement information can be used to lock as well as unlock the occurence of NLWE in terms of optimal nambiguous discrimination. Our results can provide a useful application for hiding or sharing information based on non-orthogonal separable states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donghoon Ha ◽  
Jeong San Kim

AbstractNonlocality without entanglement(NLWE) is a nonlocal phenomenon that occurs in quantum state discrimination of multipartite separable states. In the discrimination of orthogonal separable states, the term NLWE is used when the quantum states cannot be discriminated perfectly by local operations and classical communication. In this case, the occurrence of NLWE is independent of nonzero prior probabilities of quantum states being prepared. Recently, it has been found that the occurrence of NLWE can depend on nonzero prior probabilities in minimum-error discrimination of nonorthogonal separable states. Here, we show that even in optimal unambiguous discrimination, the occurrence of NLWE can depend on nonzero prior probabilities. We further show that NLWE can occur regardless of nonzero prior probabilities, even if only one state can be locally discriminated without error. Our results provide new insights into classifying sets of multipartite quantum states in terms of quantum state discrimination.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 425
Author(s):  
Zbigniew Puchała ◽  
Łukasz Pawela ◽  
Aleksandra Krawiec ◽  
Ryszard Kukulski ◽  
Michał Oszmaniec

We present an in-depth study of the problem of multiple-shot discrimination of von Neumann measurements in finite-dimensional Hilbert spaces. Specifically, we consider two scenarios: minimum error and unambiguous discrimination. In the case of minimum error discrimination, we focus on discrimination of measurements with the assistance of entanglement. We provide an alternative proof of the fact that all pairs of distinct von Neumann measurements can be distinguished perfectly (i.e. with the unit success probability) using only a finite number of queries. Moreover, we analytically find the minimal number of queries needed for perfect discrimination. We also show that in this scenario querying the measurements in parallel gives the optimal strategy, and hence any possible adaptive methods do not offer any advantage over the parallel scheme. In the unambiguous discrimination scenario, we give the general expressions for the optimal discrimination probabilities with and without the assistance of entanglement. Finally, we show that typical pairs of Haar-random von Neumann measurements can be perfectly distinguished with only two queries.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1422
Author(s):  
Min Namkung ◽  
Younghun Kwon

Unambiguous quantum state discrimination is a strategy where the conclusive result can always be trusted. This strategy is very important, since it can be used for various quantum information protocols, including quantum key distribution. However, in the view of quantumness, it is not clear what is going on in performing unambiguous quantum state discrimination. To answer the question, we investigate coherence distribution when unambiguous discrimination is performed by generalized measurement. Specially, we study coherence distribution in three cases, which consist of unambiguous quantum state discrimination, sequential quantum state discrimination, and assisted optimal discrimination, which are considered to be a family of unambiguous quantum state discrimination. In this investigation, we show that the structure of generalized measurements performing various types of unambiguous quantum state discrimination can be understood in terms of coherence distribution. Our result is not limited to the discrimination of two pure quantum states, but it is extended to the discrimination of two mixed states.


2020 ◽  
Vol 128 (8) ◽  
pp. 1193-1198
Author(s):  
M. M. Eskandari ◽  
D. B. Horoshko ◽  
S. Ya. Kilin

Sign in / Sign up

Export Citation Format

Share Document