Entangled states with strong positive partial transpose

2010 ◽  
Vol 81 (6) ◽  
Author(s):  
Kil-Chan Ha
2015 ◽  
Vol 13 (05) ◽  
pp. 1550036 ◽  
Author(s):  
Hui Zhao ◽  
Xin-Yu Yu ◽  
Naihuan Jing

We construct a class of entangled states in ℋ = ℋA ⊗ ℋB ⊗ ℋC quantum systems with dim ℋA = dim ℋB = dim ℋC = 2 and classify those states with respect to their distillability properties. The states are bound entanglement for the bipartite split (AB) - C. The states are non-positive partial transpose (NPT) entanglement and 1-copy undistillable for the bipartite splits A - (BC) and B - (AC). Moreover, we generalize the results of 2 ⊗ 2 ⊗ 2 systems to the case of 2n ⊗ 2n ⊗ 2n systems.


2014 ◽  
Vol 14 (13&14) ◽  
pp. 1098-1106
Author(s):  
Alessandro Cosentino ◽  
Vincent Russo

We study the problem of distinguishing quantum states using local operations and classical communication (LOCC). A question of fundamental interest is whether there exist sets of $k \leq d$ orthogonal maximally entangled states in $\complex^{d}\otimes\complex^{d}$ that are not perfectly distinguishable by LOCC. A recent result by Yu, Duan, and Ying [Phys. Rev. Lett. 109 020506 (2012)] gives an affirmative answer for the case $k = d$. We give, for the first time, a proof that such sets of states indeed exist even in the case $k < d$. Our result is constructive and holds for an even wider class of operations known as positive-partial-transpose measurements (PPT). The proof uses the characterization of the PPT-distinguishability problem as a semidefinite program.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 685
Author(s):  
Arunava Majumder ◽  
Harshank Shrotriya ◽  
Leong-Chuan Kwek

Quantum metrology overcomes standard precision limits and has the potential to play a key role in quantum sensing. Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurements. Conventional bounds to the measurement precision such as the shot noise limit are not as fundamental as the Heisenberg limits, and can be beaten with quantum strategies that employ `quantum tricks’ such as squeezing and entanglement. Bipartite entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are usually considered to be too weakly entangled for applications. Since no pure entanglement can be distilled from them, they are also called bound entangled states. We provide strategies, using which multipartite quantum states that have a positive partial transpose with respect to all bi-partitions of the particles can still outperform separable states in linear interferometers.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350002 ◽  
Author(s):  
WEI CHENG ◽  
FANG XU ◽  
HUA LI ◽  
GANG WANG

Given two bipartite quantum states and the convex linear combination of them, we discuss the relation between the entanglement of the convex linear combination state and the entanglement of states being combined. This is achieved by characterizing quantum states quantitatively via the positive partial transpose (PPT) criterion and the computable cross-norm or realignment (CCNR) criterion. Inspired by the Horodecki's 3 ⊗ 3 quantum states, we also give explicit examples to illustrate all possible cases of convex linear combination. Finally, as an application of this method, we show how to construct new bipartite PPT entangled states from known PPT entangled states by convex linear combination.


2013 ◽  
Vol 13 (9&10) ◽  
pp. 751-770
Author(s):  
Lukasz Pankowski ◽  
Fernando G.S.L. Brandao ◽  
Michal Horodecki ◽  
Graeme Smith

It is known that from entangled states that have positive partial transpose it is not possible to distill maximally entangled states by local operations and classical communication (LOCC). A long-standing open question is whether maximally entangled states can be distilled from every state with a non-positive partial transpose. In this paper we study a possible approach to the question consisting of enlarging the class of operations allowed. Namely, instead of LOCC operations we consider $k$-extendible operations, defined as maps whose Choi-Jamio\l{}kowski state is $k$-extendible. We find that this class is unexpectedly powerful - e.g. it is capable of distilling EPR pairs even from completely product states. We also perform numerical studies of distillation of Werner states by those maps, which show that if we raise the extension index $k$ simultaneously with the number of copies of the state, then the class of $k$-extendible operations are not that powerful anymore and provide a better approximation to the set of LOCC operations.


Sign in / Sign up

Export Citation Format

Share Document