partial transpose
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antoine Neven ◽  
Jose Carrasco ◽  
Vittorio Vitale ◽  
Christian Kokail ◽  
Andreas Elben ◽  
...  

AbstractWe propose an ordered set of experimentally accessible conditions for detecting entanglement in mixed states. The k-th condition involves comparing moments of the partially transposed density operator up to order k. Remarkably, the union of all moment inequalities reproduces the Peres-Horodecki criterion for detecting entanglement. Our empirical studies highlight that the first four conditions already detect mixed state entanglement reliably in a variety of quantum architectures. Exploiting symmetries can help to further improve their detection capabilities. We also show how to estimate moment inequalities based on local random measurements of single state copies (classical shadows) and derive statistically sound confidence intervals as a function of the number of performed measurements. Our analysis includes the experimentally relevant situation of drifting sources, i.e. non-identical, but independent, state copies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gleb A. Skorobagatko

AbstractGeneral physical background of famous Peres–Horodecki positive partial transpose (PH- or PPT-) separability criterion is revealed. Especially, the physical sense of partial transpose operation is shown to be equivalent to what one could call as the “local causality reversal” (LCR-) procedure for all separable quantum systems or to the uncertainty in a global time arrow direction in all entangled cases. Using these universal causal considerations brand new general relations for the heuristic causal separability criterion have been proposed for arbitrary $$ D^{N} \times D^{N}$$ D N × D N density matrices acting in $$ {\mathcal {H}}_{D}^{\otimes N} $$ H D ⊗ N Hilbert spaces which describe the ensembles of N quantum systems of D eigenstates each. Resulting general formulas have been then analyzed for the widest special type of one-parametric density matrices of arbitrary dimensionality, which model a number of equivalent quantum subsystems being equally connected (EC-) with each other to arbitrary degree by means of a single entanglement parameter p. In particular, for the family of such EC-density matrices it has been found that there exists a number of N- and D-dependent separability (or entanglement) thresholds$$ p_{th}(N,D) $$ p th ( N , D ) for the values of the corresponded entanglement parameter p, which in the simplest case of a qubit-pair density matrix in $$ {\mathcal {H}}_{2} \otimes {\mathcal {H}}_{2} $$ H 2 ⊗ H 2 Hilbert space are shown to reduce to well-known results obtained earlier independently by Peres (Phys Rev Lett 77:1413–1415, 1996) and Horodecki (Phys Lett A 223(1–2):1–8, 1996). As the result, a number of remarkable features of the entanglement thresholds for EC-density matrices has been described for the first time. All novel results being obtained for the family of arbitrary EC-density matrices are shown to be applicable to a wide range of both interacting and non-interacting (at the moment of measurement) multi-partite quantum systems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated quantum many-body systems with the possibility of many-body localization, etc.


2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Xiao-Dong Yu ◽  
Satoya Imai ◽  
Otfried Gühne
Keyword(s):  

Author(s):  
Hamza Fawzi

AbstractGiven integers $$n \ge m$$ n ≥ m , let $$\text {Sep}(n,m)$$ Sep ( n , m ) be the set of separable states on the Hilbert space $$\mathbb {C}^n \otimes \mathbb {C}^m$$ C n ⊗ C m . It is well-known that for $$(n,m)=(3,2)$$ ( n , m ) = ( 3 , 2 ) the set of separable states has a simple description using semidefinite programming: it is given by the set of states that have a positive partial transpose. In this paper we show that for larger values of n and m the set $$\text {Sep}(n,m)$$ Sep ( n , m ) has no semidefinite programming description of finite size. As $$\text {Sep}(n,m)$$ Sep ( n , m ) is a semialgebraic set this provides a new counterexample to the Helton–Nie conjecture, which was recently disproved by Scheiderer in a breakthrough result. Compared to Scheiderer’s approach, our proof is elementary and relies only on basic results about semialgebraic sets and functions.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Xi Dong ◽  
Xiao-Liang Qi ◽  
Michael Walter

Abstract Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Rényi generalizations in holographic duality. We first review the definition of the Rényi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Rényi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Rényi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 685
Author(s):  
Arunava Majumder ◽  
Harshank Shrotriya ◽  
Leong-Chuan Kwek

Quantum metrology overcomes standard precision limits and has the potential to play a key role in quantum sensing. Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurements. Conventional bounds to the measurement precision such as the shot noise limit are not as fundamental as the Heisenberg limits, and can be beaten with quantum strategies that employ `quantum tricks’ such as squeezing and entanglement. Bipartite entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are usually considered to be too weakly entangled for applications. Since no pure entanglement can be distilled from them, they are also called bound entangled states. We provide strategies, using which multipartite quantum states that have a positive partial transpose with respect to all bi-partitions of the particles can still outperform separable states in linear interferometers.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Sara Murciano ◽  
Riccarda Bonsignori ◽  
Pasquale Calabrese

We consider the problem of symmetry decomposition of the entanglement negativity in free fermionic systems. Rather than performing the standard partial transpose, we use the partial time-reversal transformation which naturally encodes the fermionic statistics. The negativity admits a resolution in terms of the charge imbalance between the two subsystems. We introduce a normalised version of the imbalance resolved negativity which has the advantage to be an entanglement proxy for each symmetry sector, but may diverge in the limit of pure states for some sectors. Our main focus is then the resolution of the negativity for a free Dirac field at finite temperature and size. We consider both bipartite and tripartite geometries and exploit conformal field theory to derive universal results for the charge imbalance resolved negativity. To this end, we use a geometrical construction in terms of an Aharonov-Bohm-like flux inserted in the Riemann surface defining the entanglement. We interestingly find that the entanglement negativity is always equally distributed among the different imbalance sectors at leading order. Our analytical findings are tested against exact numerical calculations for free fermions on a lattice.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 666
Author(s):  
Raúl M. Falcón

With the particular interest of being implemented in cryptography, the recognition and analysis of image patterns based on Latin squares has recently arisen as an efficient new approach for classifying partial Latin squares into isomorphism classes. This paper shows how the use of a Computer Algebra System (CAS) becomes necessary to delve into this aspect. Thus, the recognition and analysis of image patterns based on these combinatorial structures benefits from the use of computational algebraic geometry to determine whether two given partial Latin squares describe the same affine algebraic set. This paper delves into this topic by focusing on the use of a CAS to characterize when two partial Latin squares are either partial transpose or partial isotopic.


Author(s):  
Mohammad Bagher Ghaemi ◽  
Nahid Gharakhanlu ◽  
Themistocles M. Rassias ◽  
Reza Saadati

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jhih-Yuan Kao ◽  
Chung-Hsien Chou

Abstract Quantum operations are the fundamental transformations on quantum states. In this work, we study the relation between entangling capacities of operations, geometry of operations, and positive partial transpose (PPT) states, which are an important class of states in quantum information. We show a method to calculate bounds for entangling capacity, the amount of entanglement that can be produced by a quantum operation, in terms of negativity, a measure of entanglement. The bounds of entangling capacity are found to be associated with how non-PPT (PPT preserving) an operation is. A length that quantifies both entangling capacity/entanglement and PPT-ness of an operation or state can be defined, establishing a geometry characterized by PPT-ness. The distance derived from the length bounds the relative entangling capability, endowing the geometry with more physical significance. We also demonstrate the equivalence of PPT-ness and separability for unitary operations.


Sign in / Sign up

Export Citation Format

Share Document