positive partial transpose
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gleb A. Skorobagatko

AbstractGeneral physical background of famous Peres–Horodecki positive partial transpose (PH- or PPT-) separability criterion is revealed. Especially, the physical sense of partial transpose operation is shown to be equivalent to what one could call as the “local causality reversal” (LCR-) procedure for all separable quantum systems or to the uncertainty in a global time arrow direction in all entangled cases. Using these universal causal considerations brand new general relations for the heuristic causal separability criterion have been proposed for arbitrary $$ D^{N} \times D^{N}$$ D N × D N density matrices acting in $$ {\mathcal {H}}_{D}^{\otimes N} $$ H D ⊗ N Hilbert spaces which describe the ensembles of N quantum systems of D eigenstates each. Resulting general formulas have been then analyzed for the widest special type of one-parametric density matrices of arbitrary dimensionality, which model a number of equivalent quantum subsystems being equally connected (EC-) with each other to arbitrary degree by means of a single entanglement parameter p. In particular, for the family of such EC-density matrices it has been found that there exists a number of N- and D-dependent separability (or entanglement) thresholds$$ p_{th}(N,D) $$ p th ( N , D ) for the values of the corresponded entanglement parameter p, which in the simplest case of a qubit-pair density matrix in $$ {\mathcal {H}}_{2} \otimes {\mathcal {H}}_{2} $$ H 2 ⊗ H 2 Hilbert space are shown to reduce to well-known results obtained earlier independently by Peres (Phys Rev Lett 77:1413–1415, 1996) and Horodecki (Phys Lett A 223(1–2):1–8, 1996). As the result, a number of remarkable features of the entanglement thresholds for EC-density matrices has been described for the first time. All novel results being obtained for the family of arbitrary EC-density matrices are shown to be applicable to a wide range of both interacting and non-interacting (at the moment of measurement) multi-partite quantum systems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated quantum many-body systems with the possibility of many-body localization, etc.


Author(s):  
Hamza Fawzi

AbstractGiven integers $$n \ge m$$ n ≥ m , let $$\text {Sep}(n,m)$$ Sep ( n , m ) be the set of separable states on the Hilbert space $$\mathbb {C}^n \otimes \mathbb {C}^m$$ C n ⊗ C m . It is well-known that for $$(n,m)=(3,2)$$ ( n , m ) = ( 3 , 2 ) the set of separable states has a simple description using semidefinite programming: it is given by the set of states that have a positive partial transpose. In this paper we show that for larger values of n and m the set $$\text {Sep}(n,m)$$ Sep ( n , m ) has no semidefinite programming description of finite size. As $$\text {Sep}(n,m)$$ Sep ( n , m ) is a semialgebraic set this provides a new counterexample to the Helton–Nie conjecture, which was recently disproved by Scheiderer in a breakthrough result. Compared to Scheiderer’s approach, our proof is elementary and relies only on basic results about semialgebraic sets and functions.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 685
Author(s):  
Arunava Majumder ◽  
Harshank Shrotriya ◽  
Leong-Chuan Kwek

Quantum metrology overcomes standard precision limits and has the potential to play a key role in quantum sensing. Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurements. Conventional bounds to the measurement precision such as the shot noise limit are not as fundamental as the Heisenberg limits, and can be beaten with quantum strategies that employ `quantum tricks’ such as squeezing and entanglement. Bipartite entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are usually considered to be too weakly entangled for applications. Since no pure entanglement can be distilled from them, they are also called bound entangled states. We provide strategies, using which multipartite quantum states that have a positive partial transpose with respect to all bi-partitions of the particles can still outperform separable states in linear interferometers.


Author(s):  
Mario Berta ◽  
Francesco Borderi ◽  
Omar Fawzi ◽  
Volkher B. Scholz

AbstractWe give asymptotically converging semidefinite programming hierarchies of outer bounds on bilinear programs of the form $${\mathrm {Tr}}\big [H(D\otimes E)\big ]$$ Tr [ H ( D ⊗ E ) ] , maximized with respect to semidefinite constraints on D and E. Applied to the problem of approximate error correction in quantum information theory, this gives hierarchies of efficiently computable outer bounds on the success probability of approximate quantum error correction codes in any dimension. The first level of our hierarchies corresponds to a previously studied relaxation (Leung and Matthews in IEEE Trans Inf Theory 61(8):4486, 2015) and positive partial transpose constraints can be added to give a sufficient criterion for the exact convergence at a given level of the hierarchy. To quantify the worst case convergence speed of our sum-of-squares hierarchies, we derive novel quantum de Finetti theorems that allow imposing linear constraints on the approximating state. In particular, we give finite de Finetti theorems for quantum channels, quantifying closeness to the convex hull of product channels as well as closeness to local operations and classical forward communication assisted channels. As a special case this constitutes a finite version of Fuchs-Schack-Scudo’s asymptotic de Finetti theorem for quantum channels. Finally, our proof methods answer a question of Brandão and Harrow (Proceedings of the forty-fourth annual ACM symposium on theory of computing, STOC’12, p 307, 2012) by improving the approximation factor of de Finetti theorems with no symmetry from $$O(d^{k/2})$$ O ( d k / 2 ) to $${\mathrm {poly}}(d,k)$$ poly ( d , k ) , where d denotes local dimension and k the number of copies.


Author(s):  
Mohammad Bagher Ghaemi ◽  
Nahid Gharakhanlu ◽  
Themistocles M. Rassias ◽  
Reza Saadati

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jhih-Yuan Kao ◽  
Chung-Hsien Chou

Abstract Quantum operations are the fundamental transformations on quantum states. In this work, we study the relation between entangling capacities of operations, geometry of operations, and positive partial transpose (PPT) states, which are an important class of states in quantum information. We show a method to calculate bounds for entangling capacity, the amount of entanglement that can be produced by a quantum operation, in terms of negativity, a measure of entanglement. The bounds of entangling capacity are found to be associated with how non-PPT (PPT preserving) an operation is. A length that quantifies both entangling capacity/entanglement and PPT-ness of an operation or state can be defined, establishing a geometry characterized by PPT-ness. The distance derived from the length bounds the relative entangling capability, endowing the geometry with more physical significance. We also demonstrate the equivalence of PPT-ness and separability for unitary operations.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 827
Author(s):  
Guanghao Xue ◽  
Liang Qiu

We investigated the dynamics of a two-qutrit system in a correlated quantum channel. The partial correlations between consecutive actions of the channel can effectively postpone the phenomenon of distillability sudden death (DSD) and broaden the range of the time cutoff that indicates entanglement of the positive partial transpose states. Particularly, the negativity of the system will revive and DSD will disappear in the fully correlated channel.


2020 ◽  
Vol 36 (36) ◽  
pp. 256-264
Author(s):  
Mehmet Gumus ◽  
Jianzhen Liu ◽  
Samir Raouafi ◽  
Tin-Yau Tam

This paper mainly focuses on the class of $2 \times 2$ block PPT matrices. The relationship between PPT matrices and the norm inequalities is further explored. Some properties of a non-PPT matrix in terms of its eigenvalues are investigated. Moreover, a number of useful sufficient conditions for a matrix to be PPT are provided.


2019 ◽  
Vol 73 (10) ◽  
Author(s):  
Abdessamad Belfakir ◽  
Mustapha Ziane ◽  
Morad El Baz ◽  
Yassine Hassouni

Sign in / Sign up

Export Citation Format

Share Document