scholarly journals Exact dynamics of single-qubit-gate fidelities under the measurement-based quantum computation scheme

2012 ◽  
Vol 86 (4) ◽  
Author(s):  
L. G. E. Arruda ◽  
F. F. Fanchini ◽  
R. d. J. Napolitano ◽  
J. E. M. Hornos ◽  
A. O. Caldeira
Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Elena Ferraro ◽  
Marco Fanciulli ◽  
Marco De Michielis

Several spin qubit architectures have been proposed, theoretically investigated and realized at least on the scale of single devices in view of quantum computation and simulation applications. We focus our study on five qubit types: quantum dot spin qubit, double quantum dot singlet-triplet qubit, double quantum dot hybrid qubit, donor qubit, quantum dot spin-donor qubit and for each one we derived a compact effective Hamiltonian. Single qubit gate fidelities when time interval error is included are compared. A realistic set of values for the error parameters of amplitude controls linked to the z and x contribution appearing in the Hamiltonian models has been used. This study provides a ranking of the gate fidelities for the different qubit architectures highlighting which one is the most robust with respect to the considered control noises.


2003 ◽  
Vol 3 (1) ◽  
pp. 84-92
Author(s):  
Y-Y Shi

What additional gates are needed for a set of classical universal gates to do universal quantum computation? We prove that any single-qubit real gate suffices, except those that preserve the computational basis. The Gottesman-Knill Theorem implies that any quantum circuit involving only the Controlled-NOT and Hadamard gates can be efficiently simulated by a classical circuit. In contrast, we prove that Controlled-NOT plus any single-qubit real gate that does not preserve the computational basis and is not Hadamard (or its like) are universal for quantum computing. Previously only a generic gate, namely a rotation by an angle incommensurate with \pi, is known to be sufficient in both problems, if only one single-qubit gate is added.


2021 ◽  
Vol 142 ◽  
pp. 107190
Author(s):  
Qin Li ◽  
Chengdong Liu ◽  
Yu Peng ◽  
Fang Yu ◽  
Cai Zhang

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Wright ◽  
K. M. Beck ◽  
S. Debnath ◽  
J. M. Amini ◽  
Y. Nam ◽  
...  

AbstractThe field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5$$\%$$%, average two-qubit-gate fidelities of 97.5$$\%$$%, and SPAM errors of 0.7$$\%$$%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78$$\%$$% and 35$$\%$$%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 181-218 ◽  
Author(s):  
MARCIN ZWIERZ ◽  
PIETER KOK

Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes — stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium — an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single stepQ-qubit GHZ states with success probability psuccess ~ ηQ/2, where η is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer.


2008 ◽  
Vol 53 (3) ◽  
pp. 775-779 ◽  
Author(s):  
Paulo Sergio Pereira da Silva ◽  
Pierre Rouchon
Keyword(s):  

2008 ◽  
Vol 06 (06) ◽  
pp. 1223-1230 ◽  
Author(s):  
WEN-ZHEN CAO ◽  
LI-JIE TIAN ◽  
HUI-JUAN JIANG ◽  
CHONG LI

We propose a scenario to realize quantum computers utilizing heteronuclear diatomic rovibrational states as qubits. We focused on rovibrational qubits created by simple transform limited infrared laser pulse instead of using chirped pulse. Numerical calculations show that single qubit gate operation in the electronic ground state of LiH molecule can be obtained. We also discuss the effect of temperature on the initially rotational states, and a suitable experiment condition is indicated.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350001 ◽  
Author(s):  
MATTHEW McKAGUE

We consider the power of various quantum complexity classes with the restriction that states and operators are defined over a real, rather than complex, Hilbert space. It is well known that a quantum circuit over the complex numbers can be transformed into a quantum circuit over the real numbers with the addition of a single qubit. This implies that BQP retains its power when restricted to using states and operations over the reals. We show that the same is true for QMA (k), QIP (k), QMIP and QSZK.


Sign in / Sign up

Export Citation Format

Share Document