Predicting Sulfidic and Naphthenic Acid Corrosion

CORROSION ◽  
2009 ◽  
Vol 65 (12) ◽  
pp. 831-844 ◽  
Author(s):  
J. Hau

Abstract This paper reviews the factors that are hindering the development of models to predict corrosion due to sulfur compounds, naphthenic acids, or both, acting simultaneously on steels within the temperature range typically from 230°C to 400°C. These factors are identified as data scattering that do not distribute normally, variables or factors that do not exert their influence in a gradual manner but as a threshold behavior, and the interactions between the factors of sulfidic and naphthenic acid corrosion; exposure time, temperature, and velocity (shear stress); and the chromium and molybdenum content of the steels (Si content is not discussed). Not dealing with the interactions is probably the largest obstacle, followed by data scattering.

2018 ◽  
Vol 791 ◽  
pp. 95-101
Author(s):  
Siti Nur Farhana Mazlan ◽  
Azzura Ismail ◽  
Lokman Mohd Noh ◽  
Sufizar Ahmad

Naphthenic acid is a sort of organic acid which present in crude oil and cause severe corrosion in certain circumstances. This type of acid will lead to the corrosion phenomenon known as naphthenic acid corrosion (NAC). Damage mechanism by NAC attack can be analysed using Scanning Electron Microscope (SEM), Electron-dispersive X-ray (EDX) and X-ray Diffraction (XRD). These characterization methods aim to observe the morphology, element content, and crystal structure of the NAC. The objective of this research is to apply failure analysis (FA) on heat exchanger (HE) tube bundle made form stainless steel 410 (SS410). SEM reveals the inter-granular attack initiate to crack propagation. A particular result of interest is that nickel catalytically decomposes naphthenic acids at high temperatures (e.g. 270°C) via a catalytic mechanism. For XRD testing, the corrosion product have been known and the main causes that lead to the corrosion has been detected which there is a formation of chromium carbide continuously along the pipe tube. However there is also formation of iron sulphide and chromium sulphide obtained in the XRD analysis where both are the reaction element that can retard the formation of NAC. Material selection is the most crucial task to resists from corrosion attack especially in high temperature applications. The mechanism of resistance of these elements provides insight into the failure mode of 304 and 400 series stainless steel in NA service.


1986 ◽  
Vol 41 (2) ◽  
pp. 265-274 ◽  
Author(s):  
A. Jayaraman ◽  
H. Singh ◽  
Y. Lefebvre

Author(s):  
Norshahidatul Akmar Mohd Shohaimi ◽  
Norfakhriah Jelani ◽  
Ahmad Zamani Ab Halim ◽  
Nor Hakimin Abdullah ◽  
Nurasmat Mohd Shukri

: The presence of relatively high naphthenic acid in crude oil may contribute to the major corrosion in oil pipelines and distillation units in crude oil refineries. Thus, high concentration Naphthenic Acids crude oil is considered tobe of low quality and is marketed at lower prices. In order to overcome this problem, neutralization method had been developed to reduce the TAN value in crude oil. In this study, crude oil from Petronas Penapisan Melaka was investigated. The parameters studied were reagent concentration, catalyst loading, calcination temperature and reusability of the potential catalyst. Basic chemical used were 2- methylimidazole in polyethylene glycol (PEG 600) with concentration 100, 500 and 1000 ppm. Cerium oxide-based catalysts supported onto alumina prepared with different calcination temperatures. The catalyst was characterized by using Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis-Differential Thermal Gravity (TGA-DTG) to study physical properties of the catalyst. The Ce/Al2O3 catalyst calcined at 1000°C was the best catalyst due to larger surface area formation which lead to increment of active sites thus will boost the catalytic activity. The result showed that the Ce/Al2O3 catalyst meet Petronas requirement as the TAN value reduced to 0.6 mgKOH/g from original TAN value of 4.22 mgKOH/g. The best reduction of TAN was achieved by using catalyst loading of 0.39% and reagent of 1000 ppm.


2018 ◽  
Vol 32 (9) ◽  
pp. 9142-9158 ◽  
Author(s):  
Are Bertheussen ◽  
Sébastien Simon ◽  
Johan Sjöblom

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A493-A493
Author(s):  
Laiba Jamshed ◽  
Genevieve A Perono ◽  
Shanza Jamshed ◽  
Kim Ann Cheung ◽  
Philippe J Thomas ◽  
...  

Abstract Introduction: Serotonin produced in the periphery has been shown to affect glucose and lipid homeostasis. The availability of the amino acid tryptophan, the precursor of serotonin, affects serotonin availability. In addition, the metabolism of tryptophan via the kynurenine pathway produces physiologically active metabolites which have been shown to be altered under conditions of increased adiposity and dysglycemia. There is now evidence demonstrating some environmental xenobiotics, known to affect glucose and lipid homeostasis, can also alter serotonin production and key components of the kynurenine pathway. Recent evidence suggests that exposure to compounds present in petroleum and wastewaters from oil and gas extraction sites can impact endocrine signaling and result in aberrant lipid accumulation and altered glycemic control. However, whether any of these changes can be causally ascribed to altered serotonin synthesis/signaling or tryptophan metabolism remains unknown. The goal of this study was to determine the effects of exposure to naphthenic acid (NA), a key toxicant found in wastewater from bitumen (thick crude oil present in oil sands deposits) extraction on the enzymes involved in tryptophan metabolism and serotonin production. Methods: McA-RH7777 rat hepatoma cells, were exposed to a technical NA mixture for 48 hours at concentrations within the reported range of NA found in wastewaters from oil extraction. We assessed mRNA expression for key rate-limiting enzymes involved in tryptophan metabolism that lead to either serotonin [Tph1] and/or kynurenine [Ido2 and Tdo2] production, as well as downstream enzymes in the kynurenine pathway [Afmid, Kyat1, Aadat, Kyat3, Kmo, Haao, Acmsd, Qprt]. We also examined the effects of NA on prostaglandin synthesis [Ptgs1, Ptgs2, Ptges] and signalling [Ptger2, Ptger4] as prostaglandins have been shown to be induced by serotonin and are linked to hepatic fat accumulation. Results: NA treatment significantly increased Tph1 and Ido2 expression; this occurred in association with a significant increase in the expression of the inducible prostaglandin synthase Ptgs2 (COX-2), prostaglandin E synthase Ptges, and prostaglandin receptors Ptger2 and Ptger4. Acmsd was the only downstream enzyme in the kynurenine pathway that was significantly altered by NA treatment. Conclusion: These results provide proof-of-concept that compounds associated with oil sands extraction have the potential to perturb key components of serotonin synthesis (Tph1) and tryptophan metabolism (Ido2, Acmsd). Furthermore, we found that the increase in Tph1 expression paralleled expression of Ptgs2. As increased prostaglandin production has been reported in association with nonalcoholic steatohepatitis, these data provide a potential mechanism by which exposure to NA and other petroleum-based compounds may increase the risk of metabolic disease.


2018 ◽  
Vol 45 (2) ◽  
pp. 231-251
Author(s):  
Nazish Shahid

Variation in the dynamics of a steady-state blood flow through a stenosed tapered artery has been investigated corresponding to changes in thixotropic parameter ? over the range [0,1]. To probe the role of parameter ? and differentiate the current model from other known non-Newtonian models, expressions of axial velocity, shear stress, wall shear stress and flow rate have been calculated depending upon this parameter and pressure gradient. Also, pressure gradient has been deduced uniquely with the help of the continuity equation. Our choice of calculating pressure gradient has led to obtaining shear stress such that its dependence on the structural parameter of our model, unlike most available results, motivates for further investigation. The simultaneous effects of varying yield stress and parameter ? on axial velocity, flow resistance and flow rate have been studied such that the differences between the Herschel?Bulkley fluid model and our current model can be pointed out. To validate the suitability of our model and some results in history, we have also obtained limiting results for particular values of ?.


2016 ◽  
Vol 30 (8) ◽  
pp. 6853-6862 ◽  
Author(s):  
Peng Jin ◽  
Gheorghe Bota ◽  
Winston Robbins ◽  
Srdjan Nesic

Sign in / Sign up

Export Citation Format

Share Document