Quantum nonlocality of multipartite orthogonal product states

2016 ◽  
Vol 93 (3) ◽  
Author(s):  
Guang-Bao Xu ◽  
Qiao-Yan Wen ◽  
Su-Juan Qin ◽  
Ying-Hui Yang ◽  
Fei Gao
Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 619
Author(s):  
Fei Shi ◽  
Mao-Sheng Li ◽  
Mengyao Hu ◽  
Lin Chen ◽  
Man-Hong Yung ◽  
...  

A set of multipartite orthogonal product states is locally irreducible, if it is not possible to eliminate one or more states from the set by orthogonality-preserving local measurements. An effective way to prove that a set is locally irreducible is to show that only trivial orthogonality-preserving local measurement can be performed to this set. In general, it is difficult to show that such an orthogonality-preserving local measurement must be trivial. In this work, we develop two basic techniques to deal with this problem. Using these techniques, we successfully show the existence of unextendible product bases (UPBs) that are locally irreducible in every bipartition in d⊗d⊗d for any d≥3, and 3⊗3⊗3 achieves the minimum dimension for the existence of such UPBs. These UPBs exhibit the phenomenon of strong quantum nonlocality without entanglement. Our result solves an open question given by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] and Yuan et al. [Phys. Rev. A 102, 042228 (2020)]. It also sheds new light on the connections between UPBs and strong quantum nonlocality.


2022 ◽  
Author(s):  
Bichen Che ◽  
Zhao Dou ◽  
Xiubo Chen ◽  
Yu Yang ◽  
Li Jian ◽  
...  

Abstract The unextendible product bases (UPB) are interesting members of the family of orthogonal product bases. In this paper, we investigate the construction of 3-qudit UPB with strong nonlocality. First, a UPB set in ${{C}^{3}}\otimes {{C}^{3}}\otimes {{C}^{3}}$ of size 19 is presented based on the Shifts UPB. By mapping the system to a Rubik's Cube, we provide a general method of constructing UPB in ${{C}^{d}}\otimes {{C}^{d}}\otimes {{C}^{d}}$ of size ${{\left(d-1 \right)}^{3}}+2d+5$, whose corresponding Rubik's Cube is composed of four parts. Second, for the more general case where the dimensions of parties are different, we extend the classical tile structure to the 3-qudit system and propose the Tri-tile structure. By means of this structure, a ${{C}^{4}}\otimes {{C}^{4}}\otimes {{C}^{5}}$ system of size 38 is obtained based on a ${{C}^{3}}\otimes {{C}^{3}}\otimes {{C}^{4}}$ system of size 19. Then, we generalize this approach to ${{C}^{{{d}_{1}}}}\otimes {{C}^{{{d}_{2}}}}\otimes {{C}^{{{d}_{3}}}}$ system which also consists of four parts. Our research provides a positive answer to the open question raised in [Halder, et al., PRL, 122, 040403 (2019)], indicating that there do exist UPB that can exhibit strong quantum nonlocality without entanglement.


Author(s):  
Fei Shi ◽  
Mao-Sheng Li ◽  
Lin Chen ◽  
Xiande Zhang

Abstract A set of multipartite orthogonal product states is strongly nonlocal if it is locally irreducible in every bipartition, which shows the phenomenon of strong quantum nonlocality without entanglement. It is known that unextendible product bases (UPBs) can show the phenomenon of quantum nonlocality without entanglement. Thus it is interesting to investigate the strong quantum nonlocality for UPBs. Most of the UPBs with the minimum size cannot demonstrate strong quantum nonlocality. In this paper, we construct a series of UPBs with different large sizes in dAXdBxdC and dAxdBxdCxdD for dA, dB, dC, dD ≧3, and we also show that these UPBs have strong quantum nonlocality, which answers an open question given by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] and Yuan et al. [Phys. Rev. A 102, 042228 (2020)] for any possible three and four-partite systems. Furthermore, we propose an entanglement-assisted protocol to locally discriminate the UPB in 3x3x4, and it consumes less entanglement resource than the teleportation-based protocol. Our results build the connection between strong quantum nonlocality and UPBs.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 4 introduces some of the major mysteries and interpretational issues of quantum mechanics (QM). These mysteries and issues include: quantum superposition, quantum nonlocality, Bell’s inequality, entanglement, delayed choice, the measurement problem, and the lack of counterfactual definiteness. All these mysteries and interpretational issues of QM result from dynamical explanation in the mechanical universe and are dispatched using the authors’ adynamical explanation in the block universe, called Relational Blockworld (RBW). A possible link between RBW and quantum information theory is provided. The metaphysical underpinnings of RBW, such as contextual emergence, spatiotemporal ontological contextuality, and adynamical global constraints, are provided in Philosophy of Physics for Chapter 4. That is also where RBW is situated with respect to retrocausal accounts and it is shown that RBW is a realist, psi-epistemic account of QM. All the relevant formalism for this chapter is provided in Foundational Physics for Chapter 4.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrei Khrennikov

AbstractWe present a quantum mechanical (QM) analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies rejection of this postulate as well. Thus, this hidden-variable model contradicts not only the QM-formalism, but also the fundamental feature of the quantum world discovered by Planck.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Chen Qian ◽  
Yang-Guang Yang ◽  
Qun Wang ◽  
Cong-Feng Qiao
Keyword(s):  

2021 ◽  
Vol 1 (1) ◽  
pp. 22-26
Author(s):  
Chao Zhang ◽  
Huan Cao ◽  
Yun-Feng Huang ◽  
Bi-Heng Liu ◽  
Chuan-Feng Li ◽  
...  

2021 ◽  
Vol 7 (7) ◽  
pp. eabc3847
Author(s):  
Armin Tavakoli ◽  
Máté Farkas ◽  
Denis Rosset ◽  
Jean-Daniel Bancal ◽  
Jedrzej Kaniewski

Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, (ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distribution and device-independent quantum random number generation, respectively. Moreover, we also present the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important discrete Hilbert space structures to the field of quantum nonlocality.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Elisa Bäumer ◽  
Nicolas Gisin ◽  
Armin Tavakoli

AbstractIncreasingly sophisticated quantum computers motivate the exploration of their abilities in certifying genuine quantum phenomena. Here, we demonstrate the power of state-of-the-art IBM quantum computers in correlation experiments inspired by quantum networks. Our experiments feature up to 12 qubits and require the implementation of paradigmatic Bell-State Measurements for scalable entanglement-swapping. First, we demonstrate quantum correlations that defy classical models in up to nine-qubit systems while only assuming that the quantum computer operates on qubits. Harvesting these quantum advantages, we are able to certify 82 basis elements as entangled in a 512-outcome measurement. Then, we relax the qubit assumption and consider quantum nonlocality in a scenario with multiple independent entangled states arranged in a star configuration. We report quantum violations of source-independent Bell inequalities for up to ten qubits. Our results demonstrate the ability of quantum computers to outperform classical limitations and certify scalable entangled measurements.


Sign in / Sign up

Export Citation Format

Share Document