scholarly journals Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgios Chatzidrosos ◽  
Arne Wickenbrock ◽  
Lykourgos Bougas ◽  
Huijie Zheng ◽  
Oleg Tretiak ◽  
...  
2021 ◽  
Vol 11 (7) ◽  
pp. 3069
Author(s):  
Xue Zhang ◽  
Georgios Chatzidrosos ◽  
Yinan Hu ◽  
Huijie Zheng ◽  
Arne Wickenbrock ◽  
...  

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries using noninvasive detection. We demonstrate a microwave-free alternating current (AC) magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between nitrogen-vacancy (NV) centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructively image solid-state batteries. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolution is μμμ360μm. The maximum magnetic field and phase shift generated by the battery at the modulation frequency of 5 kHz are estimated as 0.04 mT and 0.03 rad respectively.


2021 ◽  
Vol 92 (4) ◽  
pp. 044904
Author(s):  
Shao-Chun Zhang ◽  
Yang Dong ◽  
Bo Du ◽  
Hao-Bin Lin ◽  
Shen Li ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2011 ◽  
Vol 83 (8) ◽  
Author(s):  
M. V. Hauf ◽  
B. Grotz ◽  
B. Naydenov ◽  
M. Dankerl ◽  
S. Pezzagna ◽  
...  

2016 ◽  
Vol 213 (8) ◽  
pp. 2044-2050 ◽  
Author(s):  
Felipe Fávaro de Oliveira ◽  
Seyed Ali Momenzadeh ◽  
Denis Antonov ◽  
Helmut Fedder ◽  
Andrej Denisenko ◽  
...  

1992 ◽  
Author(s):  
Rodrigo de Oliveira Bohbot ◽  
Dominique Lesselier ◽  
Bernard Duchene ◽  
Nathalie Coutanceau

Sign in / Sign up

Export Citation Format

Share Document