scholarly journals Quantum oscillations in strongly correlated topological Kondo insulators

2019 ◽  
Vol 100 (8) ◽  
Author(s):  
Robert Peters ◽  
Tsuneya Yoshida ◽  
Norio Kawakami
2016 ◽  
Vol 8 (0) ◽  
Author(s):  
Franco Thomas Lisandrini ◽  
Alejandro Martín Lobos ◽  
Ariel Oscar Dobry ◽  
Claudio Javier Gazza

2020 ◽  
Vol 101 (11) ◽  
Author(s):  
Yen-Wen Lu ◽  
Po-Hao Chou ◽  
Chung-Hou Chung ◽  
Ting-Kuo Lee ◽  
Chung-Yu Mou

2016 ◽  
Vol 85 (10) ◽  
pp. 104709 ◽  
Author(s):  
Yuji Matsumoto ◽  
Yoshinori Haga ◽  
Naoyuki Tateiwa ◽  
Haruyoshi Aoki ◽  
Noriaki Kimura ◽  
...  

Author(s):  
Areg Ghazaryan ◽  
Emilian Nica ◽  
Onur Erten ◽  
Pouyan Ghaemi

Abstract The surface states of 3D topological insulators in general have negligible quantum oscillations when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators can support surface states with an arbitrarily large Fermi surfaces when the chemical potential is pinned to the Dirac point. We illustrate that these Fermi surfaces give rise to finite-frequency quantum oscillations, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as `shadow surface states'. Moreover, we show that the sufficient NNN out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal topological Kondo insulators. Consequently, shadow surface states provide an important example of high-frequency quantum oscillations beyond the context of cubic topological Kondo insulators.


1989 ◽  
Vol 54 (1) ◽  
pp. 101-105 ◽  
Author(s):  
J. Bruce Tomblin ◽  
Cynthia M. Shonrock ◽  
James C. Hardy

The extent to which the Minnesota Child Development Inventory (MCDI), could be used to estimate levels of language development in 2-year-old children was examined. Fifty-seven children between 23 and 28 months were given the Sequenced Inventory of Communication Development (SICD), and at the same time a parent completed the MCDI. In addition the mean length of utterance (MLU) was obtained for each child from a spontaneous speech sample. The MCDI Expressive Language scale was found to be a strong predictor of both the SICD Expressive scale and MLU. The MCDI Comprehension-Conceptual scale, presumably a receptive language measure, was moderately correlated with the SICD Receptive scale; however, it was also strongly correlated with the expressive measures. These results demonstrated that the Expressive Language scale of the MCDI was a valid predictor of expressive language for 2-year-old children. The MCDI Comprehension-Conceptual scale appeared to assess both receptive and expressive language, thus complicating its interpretation.


2019 ◽  
Author(s):  
Sam G. B. Roberts ◽  
Anna Roberts

Group size in primates is strongly correlated with brain size, but exactly what makes larger groups more ‘socially complex’ than smaller groups is still poorly understood. Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) are among our closest living relatives and are excellent model species to investigate patterns of sociality and social complexity in primates, and to inform models of human social evolution. The aim of this paper is to propose new research frameworks, particularly the use of social network analysis, to examine how social structure differs in small, medium and large groups of chimpanzees and gorillas, to explore what makes larger groups more socially complex than smaller groups. Given a fission-fusion system is likely to have characterised hominins, a comparison of the social complexity involved in fission-fusion and more stable social systems is likely to provide important new insights into human social evolution


Sign in / Sign up

Export Citation Format

Share Document