scholarly journals Atomistic T -matrix theory of disordered two-dimensional materials: Bound states, spectral properties, quasiparticle scattering, and transport

2020 ◽  
Vol 101 (4) ◽  
Author(s):  
Kristen Kaasbjerg
2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7155-7167
Author(s):  
Alireza Taghizadeh ◽  
Kristian S. Thygesen ◽  
Thomas G. Pedersen

2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Vasilios Karanikolas ◽  
Ioannis Thanopulos ◽  
Emmanuel Paspalakis

Two-dimensional materials allow for extreme light confinement, thus becoming important candidates for all optical application platforms.  [...]


Sign in / Sign up

Export Citation Format

Share Document