Making free-energy calculations routine: Combining first principles with machine learning

2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Ryosuke Jinnouchi ◽  
Ferenc Karsai ◽  
Georg Kresse
2021 ◽  
Author(s):  
Marcus Wieder ◽  
Josh Fass ◽  
John D. Chodera

AbstractAlchemical free energy calculations are an important tool in the computational chemistry tool-box, enabling the efficient calculation of quantities critical for drug discovery such as ligand binding affinities, selectivities, and partition coefficients. However, modern alchemical free energy calculations suffer from three significant limitations: (1) modern molecular mechanics force fields are limited in their ability to model complex molecular interactions, (2) classical force fields are unable to treat phenomena that involve rearrangements of chemical bonds, and (3) these calculations are unable to easily learn to improve their performance if readily-available experimental data is available. Here, we show how all three limitations can be overcome through the use of quantum machine learning (QML) potentials capable of accurately modeling quantum chemical energetics even when chemical bonds are made and broken. Because these potentials are based on mathematically convenient deep learning architectures instead of traditional quantum chemical formulations, QML simulations can be run at a fraction of the cost of quantum chemical simulations using modern graphics processing units (GPUs) and machine learning frameworks. We demonstrate that alchemical free energy calculations in explicit solvent are especially simple to implement using QML potentials because these potentials lack singularities and other pathologies typical of molecular mechanics potentials, and that alchemical free energy calculations are highly effective even when bonds are broken or made. Finally, we show how a limited number of experimental free energy measurements can be used to significantly improve the accuracy of computed free energies for unrelated compounds with no significant generalization gap. We illustrate these concepts on the prediction of aqueous tautomer free energies (related to tautomer ratios), which are highly relevant to drug discovery in that more than a quarter of all approved drugs exist as a mixture of tautomers.


2020 ◽  
Author(s):  
Tomas Bucko ◽  
Monika Gešvandtnerová ◽  
Dario Rocca

<div>While free energies are fundamental thermodynamic quantities to characterize chemical reactions, their calculation based on ab initio theory is usually limited by the high computational cost. This is particularly true if multiple levels of theory have to be tested to establish their relative accuracy, if highly expensive quantum mechanical approximations are of interest, and also if several different temperatures have to be considered. We present an ab initio approach that effectively couples perturbation theory and machine learning to make ab initio free energy calculations more affordable. Starting from results based on a certain production ab initio theory, perturbation theory is applied to obtain free energies. The large number of single point calculations required by a brute force application of this approach are here significantly decreased by applying machine learning techniques. Importantly, the </div><div>training of the machine learning model requires only a small amount of data and does not need to be </div><div>performed again when the temperature is decreased.</div><div>The accuracy and efficiency of this method is demonstrated by computing the free energy of activation of the </div><div>proton exchange reaction in the zeolite chabazite. Starting from an ab initio calculation based on a semilocal</div><div>approximation of density functional theory, free energies based on significantly </div><div>more expensive non-local van der Waals and hybrid functionals are obtained with only a few tens</div><div>of additional single point calculations. In this way this work paves the route to</div><div>quick free energy calculations using different levels of theory or approximations that would be</div><div>too computationally expensive to be directly employed in molecular dynamics or Monte Carlo simulations.</div>


2020 ◽  
Author(s):  
Tomas Bucko ◽  
Monika Gešvandtnerová ◽  
Dario Rocca

<div>While free energies are fundamental thermodynamic quantities to characterize chemical reactions, their calculation based on ab initio theory is usually limited by the high computational cost. This is particularly true if multiple levels of theory have to be tested to establish their relative accuracy, if highly expensive quantum mechanical approximations are of interest, and also if several different temperatures have to be considered. We present an ab initio approach that effectively couples perturbation theory and machine learning to make ab initio free energy calculations more affordable. Starting from results based on a certain production ab initio theory, perturbation theory is applied to obtain free energies. The large number of single point calculations required by a brute force application of this approach are here significantly decreased by applying machine learning techniques. Importantly, the training of the machine learning model requires only a small amount of data and does not need to be performed again when the temperature is decreased. The accuracy and efficiency of this method is demonstrated by computing the free energy of activation of the proton exchange reaction in the zeolite chabazite. Starting from an ab initio calculation based on a semilocal approximation of density functional theory, free energies based on significantly more expensive non-local van der Waals and hybrid functionals are obtained with only a few tens of additional single point calculations. In this way this work paves the route to quick free energy calculations using different levels of theory or approximations that would be too computationally expensive to be directly employed in molecular dynamics or Monte Carlo simulations.</div>


2020 ◽  
Author(s):  
Tomas Bucko ◽  
Monika Gešvandtnerová ◽  
Dario Rocca

<div>While free energies are fundamental thermodynamic quantities to characterize chemical reactions, their calculation based on ab initio theory is usually limited by the high computational cost. This is particularly true if multiple levels of theory have to be tested to establish their relative accuracy, if highly expensive quantum mechanical approximations are of interest, and also if several different temperatures have to be considered. We present an ab initio approach that effectively couples perturbation theory and machine learning to make ab initio free energy calculations more affordable. Starting from results based on a certain production ab initio theory, perturbation theory is applied to obtain free energies. The large number of single point calculations required by a brute force application of this approach are here significantly decreased by applying machine learning techniques. Importantly, the training of the machine learning model requires only a small amount of data and does not need to be performed again when the temperature is decreased. The accuracy and efficiency of this method is demonstrated by computing the free energy of activation of the proton exchange reaction in the zeolite chabazite. Starting from an ab initio calculation based on a semilocal approximation of density functional theory, free energies based on significantly more expensive non-local van der Waals and hybrid functionals are obtained with only a few tens of additional single point calculations. In this way this work paves the route to quick free energy calculations using different levels of theory or approximations that would be too computationally expensive to be directly employed in molecular dynamics or Monte Carlo simulations.</div>


Sign in / Sign up

Export Citation Format

Share Document