free energy of activation
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 12 (2) ◽  
pp. 616-620
Author(s):  
Anderson U. Ezeibe ◽  
Emmanuel C. Nleonu ◽  
Kelechi G. Ubaka ◽  
Nadia Arrousse ◽  
Brandy O. Nleonu

Density and viscosity of binary liquid mixtures of household kerosene (HHK) and premium motor spirit (PMS) were determined over the entire range of mole fraction at 303K. Excess molar volume (VE), molar volume (Vm), Excess Viscosity (ηE), Viscosity deviations (Δη) and excess Gibbs free energies of activation of viscous flow (ΔGE) were calculated. The results obtained shows that excess free energy of activation were all positive over the entire mole fraction. The viscosity deviation shows both negative and positive values. The positive VE obtained in this study shows increase in volume in the binary mixture. This work will help in effective monitoring, detection of adulterated kerosene and subsequent enforcement of severe penalty on such adulteration.


Author(s):  
Juergen Pfeffermann ◽  
Nikolaus Goessweiner-Mohr ◽  
Peter Pohl

AbstractVarious nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.


2021 ◽  
Author(s):  
Fredrick Asogwa ◽  
Hitler Louis ◽  
Dollars I. Kenthurky ◽  
Obieze C. Enudi

Abstract The presence of nitrogen atom either on the diene or the dienophile structure gives rise to aza or imino-Diels-Alder reactions (DARs). Among hetero-DARs, imino-dienophiles yields numerous functionalized compounds with numerous biological activities including but not limited to antifungal, antibacterial and enzymatic properties. Density functional theory (DFT) using the B3LYP functional at the 6-31+G (d, p) basis set along with topological studies (QTAIM) were used for the investigation of 10 different (SD1-SD10) DARs which differ in the nature of substituents groups attached to the diene molecule. The study indicates higher electron density and stronger interaction for substituted dienes with the cycloalkanes, furan, carbonyl, and -OH groups. It was observed in the HOMO-LUMO energy differences that the bulky groups; SD3, SD4, and SD6 had destabilization energy of -7.86 and 0.09, -7.88 and 0.10 and -7.50 and -0.014 eV respectively in their HOMO and LUMO levels while the halogen substituted dienes SD1, SD2, and SD5 had -8.20 and -0.32, -8.31 and -0.34 and -8.19 and -0.20 eV respectively. The study showed that synthesis of hetero-nuclear aza-cyclohexene is achieved faster with furan substituent of energy gap 7.534 eV and molecular hardness of 3.677 compared to 7.799 (SD7) -8.100 eV (SD8) and 3.899 (SD7) - 4.050 (SD8) respectively scored by other substituents noting that smaller energy gap leads to higher reactivity. HCOCH3 (SD8) retarded the rate of the reaction by about 58% (unspontaneous) following the calculated Gibb’s free energy of activation while SD6 in the ELF analysis showed complete covalent character against other cycloalkanes that showed dual characteristics of a double and single bond between N-C at their transition states.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5738
Author(s):  
Young-Ho Oh ◽  
Sungyul Lee

Quantum chemical analysis is presented, motivated by Grée and co-workers’ observation of salt effects [Adv. Synth. Catal. 2006, 348, 1149–1153] for SN2 fluorination of KF in ionic liquids (ILs). We examine the relative promoting capacity of KF in [bmim]PF6 vs. [bmim]Cl by comparing the activation barriers of the reaction in the two ILs. We also elucidate the origin of the experimentally observed additional rate acceleration in IL [bmim]PF6 achieved by adding KPF6. We find that the anion PF6- in the added salt acts as an extra Lewis base binding to the counter-cation K+ to alleviate the strong Coulomb attractive force on the nucleophile F-, decreasing the Gibbs free energy of activation as compared with that in its absence, which is in good agreement with experimental observations of rate enhancement. We also predict that using 2 eq. KF together with an eq. KPF6 would further activate SN2 fluorination.


Author(s):  
Deepak A. Zatale ◽  
Sameer M. Bagade ◽  
Ajay R. Chaware

<p>Experiment values of densities and ultrasonic speed of petroleum product Gasoline (Petrol) and 2T Oil were taken in different volume concentrations from 5%, 10%------, and 95% at different temperatures from 298.15K to 318.15K having difference of 5K. From the experimental data, Apparent Molar Compressibility (<em>ϕ<sub>K</sub></em>), Relative Association (<em>R<sub>A</sub></em>), Solvation Number (<em>S<sub>n</sub></em>), Free Energy of Activation (<em>ΔE</em>), Excess Adiabatic Compressibility (<em>β<sub>ad</sub><sup>E</sup></em>), Excess Volume (<em>V<sup>E</sup></em>), Excess Free Length (<em>L<sub>f</sub><sup>E</sup></em>) have been computed. These parameters are used to focus light on the nature of component molecules of binary liquids and the excess functions are found to be sensitive to the nature and extent of the intermolecular interactions taking place in these binary mixtures.</p>


Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 45-60
Author(s):  
Valentin N. Sapunov ◽  
Eugene A. Saveljev ◽  
Mikhail S. Voronov ◽  
Markus Valtiner ◽  
Wolfgang Linert

The basic theorem of isokinetic relationships is formulated as “if there exists a linear correlation “structure∼properties” at two temperatures, the point of their intersection will be a common point for the same correlation at other temperatures, until the Arrhenius law is violated”. The theorem is valid in various regions of thermally activated processes, in which only one parameter changes. A detailed examination of the consequences of this theorem showed that it is easy to formulate a number of empirical regularities known as the “kinetic compensation effect”, the well-known formula of the Meyer–Neldel rule, or the so-called concept of “multi-excitation entropy”. In a series of similar processes, we examined the effect of different variable parameters of the process on the free energy of activation, and we discuss possible applications.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
D. F Latona ◽  
A.E Akinola

Kinetics of alkaline hydrolysis of Fuchsin in the absence and presence of sodium benzoate was investigated at 546.5 nm by pseudo first order kinetics. The reaction was found to be first order each in [Fuchsin] and [NaOH] in the presence and absence of sodium benzoate. Double reciprocal plot indicates the presence of an intermediate complex in the course of the reaction. Activation parameters were obtained from Erying’s equation as ΔH# 24.70 kJmol-1, ΔS# -0.193 kJK-1mol-1 and ΔG# 82.21 kJ mol-1 in the absence of sodium benzoate and ΔH# 27.59 kJmol-1, ΔS# -0.185 kJ K-1mol-1 and ΔG# 82.72 kJ mol-1in the presence of sodium benzoate. Sodium benzoate plays an inhibitory role in the hydrolysis reaction. The values of the change in Gibb’s free energy of activation shows same mechanism for the hydrolytic reaction in the presence and absence of sodium benzoate. A plausible mechanism is proposed. Keywords: Sodium benzoate, Fuchsin, NaOH, rate law, mechanism


2021 ◽  
Vol 34 (1) ◽  
pp. 162-168
Author(s):  
Rakesh Patel ◽  
Ravi Prakash ◽  
Ritu Swamini Bala ◽  
Brijesh Kumar Prajapati ◽  
Rupam Yadav

In present study, the kinetics and mechanism of oxidation of pentoxifylline (PTX) by N-chlorosuccinimide (NCS) in acidic conditions at 40 ± 0.1 ºC is reported. The reaction depicts first-order kinetics in regard to [NCS], [PTX] and [HClO4]. The reaction rate goes on decreasing as the concentration of iridium(III) chloride is increased. This shows that iridium(III) chloride plays the role of an inhibitor in the reaction under investigation. Nil impact of [Hg(OAc)2], [NHS] and dielectric constant (D) of the medium on the rate of oxidation of pentoxifylline have been observed. This reaction has been investigated from 308-323 K and the monitored rate of reaction suggests a direct relationship between temperature and the rate of reaction. From the graph between log k and 1/T, value of activation energy (Ea) was numerated and more activation parameters like enthalpy of activation (ΔH#), entropy of activation (ΔS#) and free energy of activation (ΔG#) were calculated with the help of activation energy (Ea). On account of experimentally determined the kinetic orders and activation parameters, a most plausible reaction path has been suggested for the oxidation of pentoxifylline in presence of Ir(III) as an inhibitor.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5860
Author(s):  
Tímea R. Kégl ◽  
László Kollár ◽  
Tamás Kégl

The mechanism of the carbonylation of diazomethane in the presence of iron–carbonyl–phosphine catalysts has been investigated by means of DFT calculations at the M06/def-TZVP//B97D3/def2-TZVP level of theory, in combination with the SMD solvation method. The reaction rate is determined by the formation of the coordinatively unsaturated doublet-state Fe(CO)3(P) precursor followed by the diazoalkane coordination and the N2 extrusion. The free energy of activation is predicted to be 18.5 and 28.2 kcal/mol for the PF3 and PPh3 containing systems, respectively. Thus, in the presence of less basic P-donor ligands with stronger π-acceptor properties, a significant increase in the reaction rate can be expected. According to energy decomposition analysis combined with natural orbitals of chemical valence (EDA–NOCV) calculations, diazomethane in the Fe(CO)3(phosphine)(η1-CH2N2) adduct reveals a π-donor–π-acceptor type of coordination.


Sign in / Sign up

Export Citation Format

Share Document