scholarly journals Solvation Free Energy Calculations with Quantum Mechanics/Molecular Mechanics and Machine Learning Models

2018 ◽  
Vol 123 (4) ◽  
pp. 901-908 ◽  
Author(s):  
Pan Zhang ◽  
Lin Shen ◽  
Weitao Yang
2020 ◽  
Author(s):  
Dominic A. Rufa ◽  
Hannah E. Bruce Macdonald ◽  
Josh Fass ◽  
Marcus Wieder ◽  
Patrick B. Grinaway ◽  
...  

AbstractAlchemical free energy methods with molecular mechanics (MM) force fields are now widely used in the prioritization of small molecules for synthesis in structure-enabled drug discovery projects because of their ability to deliver 1–2 kcal mol−1 accuracy in well-behaved protein-ligand systems. Surpassing this accuracy limit would significantly reduce the number of compounds that must be synthesized to achieve desired potencies and selectivities in drug design campaigns. However, MM force fields pose a challenge to achieving higher accuracy due to their inability to capture the intricate atomic interactions of the physical systems they model. A major limitation is the accuracy with which ligand intramolecular energetics—especially torsions—can be modeled, as poor modeling of torsional profiles and coupling with other valence degrees of freedom can have a significant impact on binding free energies. Here, we demonstrate how a new generation of hybrid machine learning / molecular mechanics (ML/MM) potentials can deliver significant accuracy improvements in modeling protein-ligand binding affinities. Using a nonequilibrium perturbation approach, we can correct a standard, GPU-accelerated MM alchemical free energy calculation in a simple post-processing step to efficiently recover ML/MM free energies and deliver a significant accuracy improvement with small additional computational effort. To demonstrate the utility of ML/MM free energy calculations, we apply this approach to a benchmark system for predicting kinase:inhibitor binding affinities—a congeneric ligand series for non-receptor tyrosine kinase TYK2 (Tyk2)—wherein state-of-the-art MM free energy calculations (with OPLS2.1) achieve inaccuracies of 0.93±0.12 kcal mol−1 in predicting absolute binding free energies. Applying an ML/MM hybrid potential based on the ANI2x ML model and AMBER14SB/TIP3P with the OpenFF 1.0.0 (“Parsley”) small molecule force field as an MM model, we show that it is possible to significantly reduce the error in absolute binding free energies from 0.97 [95% CI: 0.68, 1.21] kcal mol−1 (MM) to 0.47 [95% CI: 0.31, 0.63] kcal mol−1 (ML/MM).


2020 ◽  
Vol 34 (6) ◽  
pp. 641-646
Author(s):  
Vikram Khanna ◽  
Jacob I. Monroe ◽  
Michael F. Doherty ◽  
Baron Peters

2016 ◽  
Vol 12 (2) ◽  
pp. 499-511 ◽  
Author(s):  
Xiangyu Jia ◽  
Meiting Wang ◽  
Yihan Shao ◽  
Gerhard König ◽  
Bernard R. Brooks ◽  
...  

2021 ◽  
Author(s):  
Marcus Wieder ◽  
Josh Fass ◽  
John D. Chodera

AbstractAlchemical free energy calculations are an important tool in the computational chemistry tool-box, enabling the efficient calculation of quantities critical for drug discovery such as ligand binding affinities, selectivities, and partition coefficients. However, modern alchemical free energy calculations suffer from three significant limitations: (1) modern molecular mechanics force fields are limited in their ability to model complex molecular interactions, (2) classical force fields are unable to treat phenomena that involve rearrangements of chemical bonds, and (3) these calculations are unable to easily learn to improve their performance if readily-available experimental data is available. Here, we show how all three limitations can be overcome through the use of quantum machine learning (QML) potentials capable of accurately modeling quantum chemical energetics even when chemical bonds are made and broken. Because these potentials are based on mathematically convenient deep learning architectures instead of traditional quantum chemical formulations, QML simulations can be run at a fraction of the cost of quantum chemical simulations using modern graphics processing units (GPUs) and machine learning frameworks. We demonstrate that alchemical free energy calculations in explicit solvent are especially simple to implement using QML potentials because these potentials lack singularities and other pathologies typical of molecular mechanics potentials, and that alchemical free energy calculations are highly effective even when bonds are broken or made. Finally, we show how a limited number of experimental free energy measurements can be used to significantly improve the accuracy of computed free energies for unrelated compounds with no significant generalization gap. We illustrate these concepts on the prediction of aqueous tautomer free energies (related to tautomer ratios), which are highly relevant to drug discovery in that more than a quarter of all approved drugs exist as a mixture of tautomers.


2020 ◽  
Author(s):  
Tomas Bucko ◽  
Monika Gešvandtnerová ◽  
Dario Rocca

<div>While free energies are fundamental thermodynamic quantities to characterize chemical reactions, their calculation based on ab initio theory is usually limited by the high computational cost. This is particularly true if multiple levels of theory have to be tested to establish their relative accuracy, if highly expensive quantum mechanical approximations are of interest, and also if several different temperatures have to be considered. We present an ab initio approach that effectively couples perturbation theory and machine learning to make ab initio free energy calculations more affordable. Starting from results based on a certain production ab initio theory, perturbation theory is applied to obtain free energies. The large number of single point calculations required by a brute force application of this approach are here significantly decreased by applying machine learning techniques. Importantly, the </div><div>training of the machine learning model requires only a small amount of data and does not need to be </div><div>performed again when the temperature is decreased.</div><div>The accuracy and efficiency of this method is demonstrated by computing the free energy of activation of the </div><div>proton exchange reaction in the zeolite chabazite. Starting from an ab initio calculation based on a semilocal</div><div>approximation of density functional theory, free energies based on significantly </div><div>more expensive non-local van der Waals and hybrid functionals are obtained with only a few tens</div><div>of additional single point calculations. In this way this work paves the route to</div><div>quick free energy calculations using different levels of theory or approximations that would be</div><div>too computationally expensive to be directly employed in molecular dynamics or Monte Carlo simulations.</div>


2019 ◽  
Author(s):  
Panagiotis Lagarias ◽  
Kerry Barkan ◽  
Eva Tzortzini ◽  
Eleni Vrontaki ◽  
Margarita Stampelou ◽  
...  

<p>Adenosine A<sub>3 </sub>receptor (A<sub>3</sub>R), is a promising drug target against cancer cell proliferation. Currently there is no experimentally determined structure of A<sub>3</sub>R. Here, we have investigate a computational model, previously applied successfully for agonists binding to A<sub>3</sub>R, using molecular dynamic (MD) simulations, Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) binding free energy calculations. Extensive computations were performed to explore the binding profile of O4-{[3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbonyl}-2-methyl-1,3-thiazole-4-carbohydroximamide (K18) to A<sub>3</sub>R. K18 is a new specific and competitive antagonist at the orthosteric binding site of A<sub>3</sub>R, discovered using virtual screening and characterized pharmacologically in our previous studies. The most plausible binding conformation for the dichlorophenyl group of K18 inside the A<sub>3</sub>R is oriented towards trans-membrane helices (TM) 5 and 6, according to the MM-PBSA and MM-GBSA binding free energy calculations, and by the previous results obtained by mutating residues of TM5, TM6 to alanine which reduce antagonist potency. The results from 14 site-directed mutagenesis experiments were interpreted using MD simulations and MM-GBSA calculations which show that the relative binding free energies of the mutant A<sub>3</sub>R - K18 complexes compare to the WT A<sub>3</sub>R are in agreement with the effect of the mutations, i.e. the reduction, maintenance or increase of antagonist potency. We show that when the residues V169<sup>5.30</sup>, M177<sup>5.38</sup>, I249<sup>6.54</sup> involved in direct interactions with K18 are mutated to alanine, the mutant A<sub>3</sub>R - K18 complexes reduce potency, increase the RMSD value of K18 inside the binding area and the MM-GBSA binding free energy compared to the WT A<sub>3</sub>R complex. Our computational model shows that other mutant A<sub>3</sub>R complexes with K18, including directly interacting residues, i.e. F168<sup>5.29</sup>A, L246<sup>6.51</sup>A, N250<sup>6.55</sup>A complexes with K18 are not stable. In these complexes of A<sub>3</sub>R mutated in directly interacting residues one or more of the interactions between K18 and these residues are lost. In agreement with the experiments, the computations show that, M174<sup>5.35</sup> a residue which does not make direct interactions with K18 is critical for K18 binding. A striking results is that the mutation of residue V169<sup>5.30</sup> to glutamic acid maintained antagonistic potency. This effect is in agreement with the binding free energy calculations and it is suggested that is due to K18 re-orientation but also to the plasticity of A<sub>3</sub>R binding area. The mutation of direct interacting L90<sup>3.32</sup> in the low region and the non-directly interacting L264<sup>7.35</sup> to alanine in the middle region increases the antagonistic potency, suggesting that chemical modifications of K18 can be applied to augment antagonistic potency. The calculated binding energies Δ<i>G</i><sub>eff</sub> values of K18 against mutant A<sub>3</sub>Rs displayed very good correlation with experimental potencies (pA<sub>2</sub> values). These results further approve the computational model for the description of K18 binding with critical residues of the orthosteric binding area which can have implications for the design of more effective antagonists based on the structure of K18.</p>


Sign in / Sign up

Export Citation Format

Share Document