scholarly journals Time-reversal symmetry breaking versus chiral symmetry breaking in twisted bilayer graphene

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
J. González ◽  
T. Stauber
2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Paul Eugenio ◽  
Ceren Dag

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern=\pm1=±1), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL’s with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL’s with the same magnetic field. In the first scenario – which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene – the opposite Chern LLL’s are Kramer pairs, and thus there exists time-reversal symmetry (\mathbb{Z}_2ℤ2). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry – a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern |{++\cdots+}\rangle|++⋯+⟩ or all negative |{--\cdots-}\rangle|−−⋯−⟩. If instead, interactions are taken between electrons of like-Chern number, the ground state is an SU(2)SU(2) ferromagnet, with total spin pointing along an arbitrary direction, as with the \nu=1ν=1 spin-\frac{1}{2}12 quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-geun Oh ◽  
Sang-Hoon Han ◽  
Seung-Gyo Jeong ◽  
Tae-Hwan Kim ◽  
Sangmo Cheon

AbstractAlthough a prototypical Su–Schrieffer–Heeger (SSH) soliton exhibits various important topological concepts including particle-antiparticle (PA) symmetry and fractional fermion charges, there have been only few advances in exploring such properties of topological solitons beyond the SSH model. Here, by considering a chirally extended double-Peierls-chain model, we demonstrate novel PA duality and fractional charge e/2 of topological chiral solitons even under the chiral symmetry breaking. This provides a counterexample to the belief that chiral symmetry is necessary for such PA relation and fractionalization of topological solitons in a time-reversal invariant topological system. Furthermore, we discover that topological chiral solitons are re-fractionalized into two subsolitons which also satisfy the PA duality. As a result, such dualities and fractionalizations support the topological $$\mathbb {Z}_4$$ Z 4 algebraic structures. Our findings will inspire researches seeking feasible and promising topological systems, which may lead to new practical applications such as solitronics.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Marcela Peláez ◽  
Urko Reinosa ◽  
Julien Serreau ◽  
Matthieu Tissier ◽  
Nicolás Wschebor

Sign in / Sign up

Export Citation Format

Share Document