chiral solitons
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 137 (1) ◽  
Author(s):  
K. S. Al-Ghafri ◽  
E. V. Krishnan ◽  
Ahmet Bekir
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-geun Oh ◽  
Sang-Hoon Han ◽  
Sangmo Cheon

AbstractWe investigate the roles of symmetry and bulk-boundary correspondence in characterizing topological edge states in generalized Jackiw–Rebbi (JR) models. We show that time-reversal (T), charge-conjugation (C), parity (P), and discrete internal field rotation ($$Z_n$$ Z n ) symmetries protect and characterize the various types of edge states such as chiral and nonchiral solitons via bulk-boundary correspondence in the presence of the multiple vacua. As two representative models, we consider the JR model composed of a single fermion field having a complex mass and the generalized JR model with two massless but interacting fermion fields. The JR model shows nonchiral solitons with the $$Z_2$$ Z 2 rotation symmetry, whereas it shows chiral solitons with the broken $$Z_2$$ Z 2 rotation symmetry. In the generalized JR model, only nonchiral solitons can emerge with only $$Z_2$$ Z 2 rotation symmetry, whereas both chiral and nonchiral solitons can exist with enhanced $$Z_4$$ Z 4 rotation symmetry. Moreover, we find that the nonchiral solitons have C, P symmetries while the chiral solitons do not, which can be explained by the symmetry-invariant lines connecting degenerate vacua. Finally, we find the symmetry correspondence between multiply-degenerate global vacua and solitons such that T, C, P symmetries of a soliton inherit from global minima that are connected by the soliton, which provides a novel tool for the characterization of topological solitons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-geun Oh ◽  
Sang-Hoon Han ◽  
Seung-Gyo Jeong ◽  
Tae-Hwan Kim ◽  
Sangmo Cheon

AbstractAlthough a prototypical Su–Schrieffer–Heeger (SSH) soliton exhibits various important topological concepts including particle-antiparticle (PA) symmetry and fractional fermion charges, there have been only few advances in exploring such properties of topological solitons beyond the SSH model. Here, by considering a chirally extended double-Peierls-chain model, we demonstrate novel PA duality and fractional charge e/2 of topological chiral solitons even under the chiral symmetry breaking. This provides a counterexample to the belief that chiral symmetry is necessary for such PA relation and fractionalization of topological solitons in a time-reversal invariant topological system. Furthermore, we discover that topological chiral solitons are re-fractionalized into two subsolitons which also satisfy the PA duality. As a result, such dualities and fractionalizations support the topological $$\mathbb {Z}_4$$ Z 4 algebraic structures. Our findings will inspire researches seeking feasible and promising topological systems, which may lead to new practical applications such as solitronics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Laliena ◽  
Sebastian Bustingorry ◽  
Javier Campo

AbstractChiral solitons are one dimensional localized magnetic structures that are metastable in some ferromagnetic systems with Dzyaloshinskii–Moriya interactions and/or uniaxial magnetic anisotropy. Though topological textures in general provide a very interesting playground for new spintronics phenomena, how to properly create and control single chiral solitons is still unclear. We show here that chiral solitons in monoaxial helimagnets, characterized by a uniaxial Dzyaloshinskii–Moriya interaction, can be stabilized with external magnetic fields. Once created, the soliton moves steadily in response to a polarized electric current, provided the induced spin-transfer torque has a dissipative (nonadiabatic) component. The structure of the soliton depends on the applied current density in such a way that steady motion exists only if the applied current density is lower than a critical value, beyond which the soliton is no longer stable.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950401 ◽  
Author(s):  
Ahmad Javid ◽  
Nauman Raza

In this work, dark and singular soliton solutions of the (1[Formula: see text]+[Formula: see text]2)-dimensional chiral nonlinear Schrödinger’s equation are obtained and analyzed dynamically along with graphical depictions. The extraction of these chiral solitons is carried out using two integration tools such as the modified simple equation method and the [Formula: see text]-expansion method. The validity conditions for the existence of these solitons are also retrieved. It is highlighted that the solitons retrieved here are of chiral nature.


2019 ◽  
Vol 64 (10) ◽  
pp. 933
Author(s):  
C. E. Zaspel ◽  
G. M. Wysin ◽  
B. A. Ivanov

Static magnetic solitons in a thin film such as skyrmions are metastable states that can be stabilized through a balance of the exchange interaction and various relativistic interactions. One of the most effective stabilizing terms is the antisymmetric exchange along with others such as magnetostatic interactions in confined structures, as well as a current-carrying nanocontact on a thin ferromagnetic film. In this article, the effect of a nanocontact current on the energies of both topological (T-type) and nontopological (NT-type) solitons has been investigated. Without an antisymmetric exchange interaction, the Oersted field from a nanocontact can stabilize both soliton types with the NT soliton as the ground state. With the antisymmetric exchange, there is a critical nanocontact current, where the T soliton becomes the ground state.


2018 ◽  
Vol 134 (6) ◽  
pp. 1120-1125 ◽  
Author(s):  
A. Biswas ◽  
Y. Yildirim ◽  
E. Yasar ◽  
Qin Zhou ◽  
S.P. Moshokoa ◽  
...  

2018 ◽  
Vol 98 (10) ◽  
Author(s):  
Yusuke Masaki ◽  
Ryuya Aoki ◽  
Yoshihiko Togawa ◽  
Yusuke Kato

2018 ◽  
Vol 97 (21) ◽  
Author(s):  
M. Shinozaki ◽  
Y. Masaki ◽  
R. Aoki ◽  
Y. Togawa ◽  
Y. Kato

2018 ◽  
Vol 97 (16) ◽  
Author(s):  
D. A. Zezyulin ◽  
D. R. Gulevich ◽  
D. V. Skryabin ◽  
I. A. Shelykh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document