scholarly journals Cavity control over heavy-hole spin qubits in inversion-symmetric crystals

2020 ◽  
Vol 102 (20) ◽  
Author(s):  
Philipp M. Mutter ◽  
Guido Burkard
Keyword(s):  
2013 ◽  
Vol 87 (19) ◽  
Author(s):  
P. Szumniak ◽  
S. Bednarek ◽  
J. Pawłowski ◽  
B. Partoens

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Takuya Kawazu

Optical properties of GaAs/AlGaAs quantum wells (QWs) in the vicinity of InAlAs quantum dots (QDs) were studied and compared with a theoretical model to clarify how the QD strain affects the electronic states in the nearby QW. In0.4Al0.6As QDs are embedded at the top of the QWs; the QD layer acts as a source of strain as well as an energy barrier. Photoluminescence excitation (PLE) measurements showed that the QD formation leads to the increase in the ratio Ie-lh/Ie-hh of the PLE intensities for the light hole (lh) and the heavy hole (hh), indicating the presence of the valence band mixing. We also theoretically calculated the hh-lh mixing in the QW due to the nearby QD strain and evaluated the PLE ratio Ie-lh/Ie-hh.


Sign in / Sign up

Export Citation Format

Share Document