excitonic effects
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 41)

H-INDEX

48
(FIVE YEARS 4)

2021 ◽  
Vol 118 (48) ◽  
pp. e2114729118
Author(s):  
Dongpeng Zhang ◽  
Pengfei Wang ◽  
Junhui Wang ◽  
Yanxiao Li ◽  
Yuguo Xia ◽  
...  

Arising from reduced dielectric screening, excitonic effects should be taken into account in ultrathin two-dimensional photocatalysts, and a significant challenge is achieving nontrivial excitonic regulation. However, the effect of structural modification on the regulation of the excitonic aspect is at a comparatively early stage. Herein, we report unusual effects of surface substitutional doping with Pt on electronic and surface characteristics of atomically thin layers of Bi3O4Br, thereby enhancing the propensity to generate 1O2. Electronically, the introduced Pt impurity states with a lower energy level can trap photoinduced singlet excitons, thus reducing the singlet–triplet energy gap by ∼48% and effectively facilitating the intersystem crossing process for efficient triplet excitons yield. Superficially, the chemisorption state of O2 causes the changes in the magnetic moment (i.e., spin state) of O2 through electron-mediated triplet energy transfer, resulting a spontaneous spin-flip process and highly specific 1O2 generation. These traits exemplify the opportunities that the surface engineering provides a unique strategy for excitonic regulation and will stimulate more research on exciton-triggering photocatalysis for solar energy conversion.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tathagata Biswas ◽  
Arunima K. Singh

AbstractThe formation and disassociation of excitons play a crucial role in any photovoltaic or photocatalytic application. However, excitonic effects are seldom considered in materials discovery studies due to the monumental computational cost associated with the examination of these properties. Here, we study the excitonic properties of nearly 50 photocatalysts using state-of-the-art Bethe–Salpeter formalism. These ~50 materials were recently recognized as promising photocatalysts for CO2 reduction through a data-driven screening of 68,860 materials. Here, we propose three screening criteria based on the optical properties of these materials, taking excitonic effects into account, to further down select six materials. Furthermore, we study the correlation between the exciton binding energies obtained from the Bethe–Salpeter formalism and those obtained from the computationally much less-expensive Wannier–Mott model for these chemically diverse ~50 materials. This work presents a paradigm towards the inclusion of excitonic effects in future materials discovery for solar-energy harvesting applications.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Shixiong Zhang ◽  
Ning Tang ◽  
Xiaoyue Zhang ◽  
Xingchen Liu ◽  
Hongming Guan ◽  
...  

2021 ◽  
Author(s):  
Mohaddeseh Norouzi Azizabad ◽  
Hosein Alavi-Rad
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 542
Author(s):  
Falko Schmidt ◽  
Agnieszka L. Kozub ◽  
Uwe Gerstmann ◽  
Wolf Gero Schmidt ◽  
Arno Schindlmayr

Lithium niobate (LiNbO3), a material frequently used in optical applications, hosts different kinds of polarons that significantly affect many of its physical properties. In this study, a variety of electron polarons, namely free, bound, and bipolarons, are analyzed using first-principles calculations. We perform a full structural optimization based on density-functional theory for selected intrinsic defects with special attention to the role of symmetry-breaking distortions that lower the total energy. The cations hosting the various polarons relax to a different degree, with a larger relaxation corresponding to a larger gap between the defect level and the conduction-band edge. The projected density of states reveals that the polaron states are formerly empty Nb 4d states lowered into the band gap. Optical absorption spectra are derived within the independent-particle approximation, corrected by the GW approximation that yields a wider band gap and by including excitonic effects within the Bethe–Salpeter equation. Comparing the calculated spectra with the density of states, we find that the defect peak observed in the optical absorption stems from transitions between the defect level and a continuum of empty Nb 4d states. Signatures of polarons are further analyzed in the reflectivity and other experimentally measurable optical coefficients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nguyen Thi Han ◽  
Vo Khuong Dien ◽  
Ming-Fa Lin

AbstractLi2SiO3 compound exhibits unique electronic and optical properties. The state-of-the-art analyses, which based on first-principle calculations, have successfully confirmed the concise physical/chemical picture and the orbital bonding in Li–O and Si–O bonds. Especially, the unusual optical response behavior includes a large red shift of the onset frequency due to the extremely strong excitonic effect, the polarization of optical properties along three-directions, various optical excitations structures and the most prominent plasmon mode in terms of the dielectric functions, energy loss functions, absorption coefficients and reflectance spectra. The close connections of electronic and optical properties can identify a specific orbital hybridization for each distinct excitation channel. The presented theoretical framework will be fully comprehending the diverse phenomena and widen the potential application of other emerging materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vo Khuong Dien ◽  
Hai Duong Pham ◽  
Ngoc Thanh Thuy Tran ◽  
Nguyen Thi Han ◽  
Thi My Duyen Huynh ◽  
...  

AbstractThe three-dimensional ternary Li2GeO3 compound presents various unusual essential properties. The main features are thoroughly explored from the first-principles calculations. The concise pictures, the critical orbital hybridizations in Li–O and Ge–O bonds, are clearly examined through the optimal geometric structure, the atom-dominated electronic energy spectrum, the spatial charge densities, the atom and orbital-decomposed van Hove singularities, and the strong optical responses. The unusual optical transitions cover the red-shift optical gap, various frequency-dependent absorption structures and the most prominent plasmon mode in terms of the dielectric functions, energy loss functions, reflectance spectra, and absorption coefficients. Optical excitations, depending on the directions of electric polarization, are strongly affected by excitonic effects. The close combinations of electronic and optical properties can identify a significant orbital hybridization for each available excitation channel. The developed theoretical framework will be very useful in fully understanding the diverse phenomena of other emergent materials.


2021 ◽  
Author(s):  
Nguyen Thi Han ◽  
Vo Dien ◽  
Ming-Fa Lin

Abstract Li2SiO3 compound exhibits unique electronic and optical properties. The state-of-the-art analyses, which based on first-principle calculations, have successfully confirmed the concise physical/chemical picture and the orbital bonding in Li-O and Si-O bonds. Especially, the unusual optical response behavior includes a large red shift of the onset frequency due to the extremely strong excitonic effect, the polarization of optical properties along three-directions, various optical excitations structures and the most prominent plasmon mode in terms of the dielectric functions, energy loss functions, absorption coefficients and reflectance spectra. The close connections of electronic and optical properties can identify a specific orbital hybridization for each distinct excitation channel. The presented theoretical framework will be fully comprehending the diverse phenomena and widen the potential application of other emerging materials.


Sign in / Sign up

Export Citation Format

Share Document