Laser stimulation of MoSe2/Au(111) in an STM junction: Photoinduced versus thermally induced current response

2021 ◽  
Vol 103 (24) ◽  
Author(s):  
Björn Lübken ◽  
Niklas Nilius
2008 ◽  
Author(s):  
Nichole M. Jindra ◽  
Robert J. Thomas ◽  
Douglas N. Goddard ◽  
Michelle L. Imholte

2006 ◽  
Vol 50 (5) ◽  
pp. 877-888 ◽  
Author(s):  
L. La Spina ◽  
N. Nenadović ◽  
V. d’Alessandro ◽  
F. Tamigi ◽  
N. Rinaldi ◽  
...  

1988 ◽  
Vol 66 (2) ◽  
pp. 213-221
Author(s):  
Pierre Gauthier

Electrical stimulation (100 Hz, 1 ms, 150 μA, 10 s) of the anterior hypothalamus in chloralose-anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in arterial pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response was accompanied by an increase in plasma noradrenaline and adrenaline levels. Peripheral sympathectomy with guanethidine selectively abolished the primary phase of the biphasic pressor response, while bilateral removal of the adrenal medulla eliminated only the secondary component. After α-adrenergic blockade with phentolamine, the primary phase of the stimulation-induced response was reduced while the secondary pressor component was blocked and replaced by a significant hypotension. The intravenous administration of sotalol enhanced the secondary pressor component without affecting the stimulation-induced plasma noradrenaline and adrenaline responses. After treatment with atropine, the secondary pressor effect was also potentiated, as the reflex bradycardia normally associated with the response was eliminated. A subsequent administration of sotalol in these rats further potentiated the secondary pressor component to stimulation. In rats treated with atropine and sotalol, the sympathetic vasomotor and the adrenomedullary pressor responses could be dissociated according to thresholds and stimulus frequency or current–response characteristics. The results suggest that in intact rats, adrenaline-induced vasodilation and reflex cardiac inhibition contribute to either reduce or mask the adrenomedullary component of the biphasic pressor response evoked by stimulation of the anterior hypothalamus. The study also raises the hypothesis of a dual regulation of both components of the sympathetic system in the anterior hypothalamic region.


2018 ◽  
Vol 53 ◽  
pp. 01007
Author(s):  
Yinghong Zuo ◽  
Maoyu Zhang ◽  
Guoxin Cheng ◽  
Shengli Niu

To obtain the transient current response law of the metal component irradiated by pulsed gamma rays, the pulsed gamma ray irradiation experiment of the iron plate was carried out on “Qiangguang-I” accelerator. The transient current of iron plate generated by pulsed gamma rays was measured and analysed, and the relationship between the amplitude of pulse current and the dose rate of gamma rays was obtained. The results show that the current response sensitivity of the iron plate is about 5.7×10-7(A/m2)/(Gy/s) when the gamma rays with the energy of 0.8 MeV irradiate the iron plate. The charge deposition rate in the iron plate can be obtained by Monte Carlo simulation, and then it can be converted to gamma ray induced current of the metal component irradiated by gamma rays.


2003 ◽  
Vol 89 (3) ◽  
pp. 1256-1264 ◽  
Author(s):  
Robert Chen ◽  
Derek Yung ◽  
Jie-Yuan Li

Motor cortex stimulation has both excitatory and inhibitory effects on ipsilateral muscles. Excitatory effects can be assessed by ipsilateral motor-evoked potentials (iMEPs). Inhibitory effects include an interruption of ipsilateral voluntary muscle activity known as the silent period (iSP) and a reduction in corticospinal excitability evoked by conditioning stimulation of the contralateral motor cortex (interhemispheric inhibition, IHI). Both iSP and IHI may be mediated by transcallosal pathways. Their relationship to the contralateral corticospinal projection and whether iSP and IHI represent the same phenomenon remain unclear. The neuronal population activated by transcranial magnetic stimulation (TMS) is highly dependent on the direction of the induced current in the brain. We examined the relationship among iMEP, iSP, IHI, and the contralateral corticospinal system by examining the effects of different stimulus intensities and current directions. Surface electromyography (EMG) was recorded from both first dorsal interosseous (FDI) muscles. The iSP in the right FDI muscle was obtained by right motor cortex stimulation during voluntary muscle contraction. IHI was examined by conditioning stimulation of the right motor cortex followed by test stimulation of the left motor cortex at interstimulus intervals (ISIs) of 2–80 ms. The induced current directions tested in the right motor cortex were anterior medial (AM), posterior medial (PM), posterior lateral, and anterior lateral (AL). Contralateral MEPs (cMEPs) had the lowest threshold with the AM direction and the shortest latency with the PM direction. iMEPs were present in 8 of 10 subjects. Both iMEP and IHI did not show significant directional preference. iSP was observed in all subjects with the highest threshold for the AL direction and the longest duration for the AM direction. cMEP, iSP, and IHI all increased with stimulus intensity up to ∼75% stimulator output. Target muscle activation decreased IHI at 8-ms ISI but had little effect on IHI at 40-ms ISI. iSP and IHI at 8-ms ISI did not correlate at any stimulus intensities and current directions tested, and factor analysis showed that they are explained by different factors. However, active IHI at 40-ms ISI was explained by the same factor as iSP. The different directional preference for cMEP compared with iMEP and IHI suggests that these ipsilateral effects are mediated by populations of cortical neurons that are different from those activating the corticospinal neurons. iSP and IHI do not represent the same phenomenon and should be considered complementary measures of ipsilateral inhibition.


Sign in / Sign up

Export Citation Format

Share Document