scholarly journals Optical vortex manipulation for topological quantum computation

2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Chengyun Hua ◽  
Gábor B. Halász ◽  
Eugene Dumitrescu ◽  
Matthew Brahlek ◽  
Benjamin Lawrie
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingyuan Kong ◽  
Lu Cao ◽  
Shiyu Zhu ◽  
Michał Papaj ◽  
Guangyang Dai ◽  
...  

AbstractThe iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation.


2016 ◽  
Vol 113 (44) ◽  
pp. 12386-12390 ◽  
Author(s):  
Hailong Fu ◽  
Pengjie Wang ◽  
Pujia Shan ◽  
Lin Xiong ◽  
Loren N. Pfeiffer ◽  
...  

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.


Author(s):  
Niccolò Traverso Ziani ◽  
Lucia Vigliotti ◽  
Matteo Carrega ◽  
Fabio Cavaliere

Majorana bound states in topological superconductors have attracted intense research activity in view of applications in topological quantum computation. However, they are not the only example of topological bound states that can occur in such systems. We here study a model in which both Majorana and Tamm bound states compete. We show both numerically and analytically that, surprisingly, the Tamm state remains partially localized even when the spectrum becomes gapless. Despite this fact, we demonstrate that the Majorana polarization shows a clear transition between the two regimes.


2003 ◽  
Vol 01 (01) ◽  
pp. 1-23 ◽  
Author(s):  
VLATKO VEDRAL

In the first part of this review we introduce the basics theory behind geometric phases and emphasize their importance in quantum theory. The subject is presented in a general way so as to illustrate its wide applicability, but we also introduce a number of examples that will help the reader understand the basic issues involved. In the second part we show how to perform a universal quantum computation using only geometric effects appearing in quantum phases. It is then finally discussed how this geometric way of performing quantum gates can lead to a stable, large scale, intrinsically fault-tolerant quantum computer.


2017 ◽  
Vol 95 (23) ◽  
Author(s):  
Torsten Karzig ◽  
Christina Knapp ◽  
Roman M. Lutchyn ◽  
Parsa Bonderson ◽  
Matthew B. Hastings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document