scholarly journals Assessing Bound States in a One-Dimensional Topological Superconductor: Majorana versus Tamm

Author(s):  
Niccolò Traverso Ziani ◽  
Lucia Vigliotti ◽  
Matteo Carrega ◽  
Fabio Cavaliere

Majorana bound states in topological superconductors have attracted intense research activity in view of applications in topological quantum computation. However, they are not the only example of topological bound states that can occur in such systems. We here study a model in which both Majorana and Tamm bound states compete. We show both numerically and analytically that, surprisingly, the Tamm state remains partially localized even when the spectrum becomes gapless. Despite this fact, we demonstrate that the Majorana polarization shows a clear transition between the two regimes.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1100
Author(s):  
Lucia Vigliotti ◽  
Fabio Cavaliere ◽  
Matteo Carrega ◽  
Niccolò Traverso Ziani

Majorana bound states in topological superconductors have attracted intense research activity in view of applications in topological quantum computation. However, they are not the only example of topological bound states that can occur in such systems. Here, we study a model in which both Majorana and Tamm bound states compete. We show both numerically and analytically that, surprisingly, the Tamm state remains partially localized even when the spectrum becomes gapless. Despite this fact, we demonstrate that the Majorana polarization shows a clear transition between the two regimes.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650213
Author(s):  
Qiu-Bo Cheng ◽  
Jing He ◽  
Jing Yu ◽  
Xiao-Ming Zhao ◽  
Su-Peng Kou

Recently, Majorana fermions (MFs) have attracted intensive attention due to their exotic statistics and possible applications in topological quantum computation. They are proposed to exist in various two-dimensional (2D) topological systems, such as [Formula: see text] topological superconductor (SC) and nanowire–superconducting hybridization system. In this paper, we point out that Majorana fermions in different topological systems obey different types of polygon sign rules. A numerical approach is described to identify the type of polygon sign rule of the Majorana fermions. Applying the approach to study two 2D topological systems, we find that vortex-induced Majorana fermions obey topological polygon sign rule and line-defect-induced Majorana fermions obey normal polygon sign rule.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingyuan Kong ◽  
Lu Cao ◽  
Shiyu Zhu ◽  
Michał Papaj ◽  
Guangyang Dai ◽  
...  

AbstractThe iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation.


2016 ◽  
Vol 113 (44) ◽  
pp. 12386-12390 ◽  
Author(s):  
Hailong Fu ◽  
Pengjie Wang ◽  
Pujia Shan ◽  
Lin Xiong ◽  
Loren N. Pfeiffer ◽  
...  

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.


Sign in / Sign up

Export Citation Format

Share Document