Relevance of anisotropy in the multichannel Kondo effect: Comparison of conformal field theory and numerical renormalization-group results

1992 ◽  
Vol 45 (14) ◽  
pp. 7918-7935 ◽  
Author(s):  
Ian Affleck ◽  
Andreas W. W. Ludwig ◽  
H.-B. Pang ◽  
D. L. Cox
Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 151 ◽  
Author(s):  
Gian Paolo Vacca ◽  
Alessandro Codello ◽  
Mahmoud Safari ◽  
Omar Zanusso

We present some general results for the multi-critical multi-field models in d > 2 recently obtained using conformal field theory (CFT) and Schwinger–Dyson methods at the perturbative level without assuming any symmetry. Results in the leading non trivial order are derived consistently for several conformal data in full agreement with functional perturbative renormalization group (RG) methods. Mechanisms like emergent (possibly approximate) symmetries can be naturally investigated in this framework.


1991 ◽  
Vol 352 (3) ◽  
pp. 849-862 ◽  
Author(s):  
Ian Affleck ◽  
Andreas W.W. Ludwig

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Andrew Loveridge

Abstract Spacetime boundaries with canonical Neuman or Dirichlet conditions preserve conformal invarience, but “mixed” boundary conditions which interpolate linearly between them can break conformal symmetry and generate interesting Renormalization Group flows even when a theory is free, providing soluble models with nontrivial scale dependence. We compute the (Rindler) entanglement entropy for a free scalar field with mixed boundary conditions in half Minkowski space and in Anti-de Sitter space. In the latter case we also compute an additional geometric contribution, which according to a recent proposal then collectively give the 1/N corrections to the entanglement entropy of the conformal field theory dual. We obtain some perturbatively exact results in both cases which illustrate monotonic interpolation between ultraviolet and infrared fixed points. This is consistent with recent work on the irreversibility of renormalization group, allowing some assessment of the aforementioned proposal for holographic entanglement entropy and illustrating the generalization of the g-theorem for boundary conformal field theory.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450158 ◽  
Author(s):  
Yu Nakayama

We show that a "constructive derivation" of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence based on the quantum local renormalization group in large-N quantum field theories consistently provides the a – c holographic Weyl anomaly in d = 4 at the curvature squared order in the bulk action. The consistency of the construction further predicts the form of the metric beta function.


Sign in / Sign up

Export Citation Format

Share Document