Classical molecular dynamics simulations of behavior ofGeO2under high pressures and at high temperatures

2006 ◽  
Vol 73 (9) ◽  
Author(s):  
K. V. Shanavas ◽  
Nandini Garg ◽  
Surinder M. Sharma
2013 ◽  
Vol 423-426 ◽  
pp. 935-938 ◽  
Author(s):  
Ji Feng Li ◽  
Xiao Ping Zhao ◽  
Jian Liu

Molecular dynamics simulations were performed to calculate the melting points of perfect crystalline aluminum to high pressures. Under ambientpressure, there exhibits about 20% superheating before melting compared to the experimental melting point. Under high pressures, thecalculated melting temperature increases with the pressure but at a decreasing rate, which agrees well with the Simon's melting equation. Porosity effect was also studied for aluminum crystals with various initial porosity at ambient pressure, which shows that the equilibrium melting point decreases with the initial porosity as experiments expect.


2014 ◽  
Vol 16 (39) ◽  
pp. 21135-21143 ◽  
Author(s):  
Richard I. Ainsworth ◽  
Jamieson K. Christie ◽  
Nora H. de Leeuw

First-principles and classical molecular dynamics simulations have been carried out on undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0–20 mol% Ag2O, and varying amounts of Na2O and CaO.


Sign in / Sign up

Export Citation Format

Share Document