Anisotropic Heisenberg model with dipolar interactions: Monte Carlo simulations of the planar-to-paramagnetic phase transition in a bilayer system

2009 ◽  
Vol 79 (5) ◽  
Author(s):  
L. A. S. Mól ◽  
B. V. Costa
2008 ◽  
Vol 15 (05) ◽  
pp. 605-612 ◽  
Author(s):  
VLADIMIR P. ZHDANOV

In the conventional Avrami–Kolmogorov–Johnson–Mehl model, the reaction or phase transition occurring in the 2D or 3D infinite medium is considered to start and proceed around randomly distributed and/or appearing nucleation centers. The radius of the regions transformed is assumed to linearly increase with time. The Monte Carlo simulations presented, illustrate what may happen if the transformation takes place in nanoparticles. The attention is focused on nucleation on the regular surface, edge and corner sites, and on the dependence of the activation energy for elementary reaction events on the local state of the sites.


2012 ◽  
Vol 190 ◽  
pp. 39-42
Author(s):  
M. Medvedeva ◽  
Pavel V. Prudnikov

The dynamic critical behavior of the three-dimensional Heisenberg model with longrangecorrelated disorder was studied by using short-time Monte Carlo simulations at criticality.The static and dynamic critical exponents are determined. The simulation was performed fromordered initial state. The obtained values of the exponents are in a good agreement with resultsof the field-theoretic description of the critical behavior of this model in the two-loopapproximation.


Sign in / Sign up

Export Citation Format

Share Document