scholarly journals Effect of spatial inhomogeneity on the mapping between strongly interacting fermions and weakly interacting spins

2010 ◽  
Vol 82 (13) ◽  
Author(s):  
Vivian V. França ◽  
Klaus Capelle
2016 ◽  
Vol 113 (18) ◽  
pp. E2489-E2497 ◽  
Author(s):  
Barak Raveh ◽  
Jerome M. Karp ◽  
Samuel Sparks ◽  
Kaushik Dutta ◽  
Michael P. Rout ◽  
...  

Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport.


2020 ◽  
Author(s):  
Andrei B. Aleksandrov ◽  
Aigerim B. Dashkina ◽  
Nina S. Konovalova ◽  
Natal'ya M. Okat'eva ◽  
Natal'ya G. Polukhina ◽  
...  

1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


2011 ◽  
Vol 13 ◽  
pp. 01002
Author(s):  
R. Alkofer ◽  
M. Mitter ◽  
B.J. Schaefer

Sign in / Sign up

Export Citation Format

Share Document