Charge compensation effect inPr1−ySryFe1−xCoxAsO codoped with Sr and Co

2011 ◽  
Vol 83 (1) ◽  
Author(s):  
X. Lin ◽  
H. J. Guo ◽  
C. Y. Shen ◽  
Y. K. Luo ◽  
Q. Tao ◽  
...  
2006 ◽  
Vol 3 (8) ◽  
pp. 2709-2712 ◽  
Author(s):  
A. Kato ◽  
N. Uchitomi ◽  
S. Oishi ◽  
T. Shishido ◽  
S. Iida

2015 ◽  
Vol 160 ◽  
pp. 436-439 ◽  
Author(s):  
Qiwei Long ◽  
Yong Gao ◽  
Yingheng Huang ◽  
Sen Liao ◽  
Baoling Song ◽  
...  

2019 ◽  
Vol 776 ◽  
pp. 276-286 ◽  
Author(s):  
Huu Phuc Dang ◽  
Quang Ho Luc ◽  
Thanh Tung Nguyen ◽  
Tran Le

2013 ◽  
Vol 35 (11) ◽  
pp. 1965-1969 ◽  
Author(s):  
Daiki Kuramoto ◽  
Takashi Horikawa ◽  
Hiromasa Hanzawa ◽  
Ken-ichi Machida

2021 ◽  
pp. 151990
Author(s):  
Donglai Li ◽  
Zhengjing Zhao ◽  
Chengzhi Wang ◽  
Shanshan Deng ◽  
Junlin Yang ◽  
...  

Calphad ◽  
1999 ◽  
Vol 23 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Patrice Chartrand ◽  
Arthur D. Pelton

2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


Sign in / Sign up

Export Citation Format

Share Document